1
|
Sorout M, Bhogal S. Current trends of functional monomers and cross linkers used to produce molecularly imprinted polymers for food analysis. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38907585 DOI: 10.1080/10408398.2024.2365337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Molecularly imprinted polymers (MIPs) as artificial synthetic receptors are in high demand for food analysis due to their inherent molecular recognition abilities. It is common practice to employ functional monomers with basic or acidic groups that can interact with analyte molecules via hydrogen bonds, covalent bonds, and other interactions (π-π, dipole-ion, hydrophobic, and Van der Waals). Therefore, selecting the appropriate functional monomer and cross-linker is crucial for determining how precisely they interact with the template and developing the polymeric network's three-dimensional structure. This study summarizes the advancements made in MIP's functional monomers and cross-linkers for food analysis from 2018 to 2023. The subsequent computational design of MIP has been thoroughly explained. The discussion has concluded with a look at the difficulties and prospects for MIP in food analysis.
Collapse
Affiliation(s)
- Mohit Sorout
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Shikha Bhogal
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| |
Collapse
|
2
|
Huang G, Ma J, Li J, Yan L. Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
4
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
5
|
SILVA JVBD, OLIVEIRA CAFD, RAMALHO LNZ. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
GONÇALVES BL, ULIANA RD, LEE SH, COPPA CF, OLIVEIRA CAFD, KAMIMURA ES, CORASSIN CH. Use of scanning electron microscopy and high-performance liquid chromatography to assess the ability of microorganisms to bind aflatoxin M1 in Minas Frescal cheese. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Development of Gold Nanoparticles Decorated Molecularly Imprinted–Based Plasmonic Sensor for the Detection of Aflatoxin M1 in Milk Samples. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aflatoxins are a group of extremely toxic and carcinogenic substances generated by the mold of the genus Aspergillus that contaminate agricultural products. When dairy cows ingest aflatoxin B1 (AFB1)−contaminated feeds, it is metabolized and transformed in the liver into a carcinogenic major form of aflatoxin M1 (AFM1), which is eliminated through the milk. The detection of AFM1 in milk is very important to be able to guarantee food safety and quality. In recent years, sensors have emerged as a quick, low–cost, and reliable platform for the detection of aflatoxins. Plasmonic sensors with molecularly imprinted polymers (MIPs) can be interesting alternatives for the determination of AFM1. In this work, we designed a molecularly–imprinted–based plasmonic sensor to directly detect lower amounts of AFM1 in raw milk samples. For this purpose, we prepared gold–nanoparticle–(AuNP)−integrated polymer nanofilm on a gold plasmonic sensor chip coated with allyl mercaptan. N−methacryloyl−l−phenylalanine (MAPA) was chosen as a functional monomer. The MIP nanofilm was prepared using the light–initiated polymerization of MAPA and ethylene glycol dimethacrylate in the presence of AFM1 as a template molecule. The developed method enabled the detection of AFM1 with a detection limit of 0.4 pg/mL and demonstrated good linearity (0.0003 ng/mL–20.0 ng/mL) under optimized experimental conditions. The AFM1 determination was performed in random dairy farmer milk samples. Using the analogous mycotoxins, it was also demonstrated that the plasmonic sensor platforms were specific to the detection of AFM1.
Collapse
|
8
|
Chen RN, Kang SH, Li J, Lu LN, Luo XP, Wu L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4538-4556. [PMID: 34570126 DOI: 10.1039/d1ay01014j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular imprinting technology for the preparation of polymers with specific molecular recognition function had become one of the current research hotspots. It has been widely applied in chromatographic separation, antibody and receptor mimetics, solid-phase extraction, bio-sensors, and other fields in the last decades. In this study, molecular imprinting technology was summarized from the points of templates and dummy templates, and four typical target analytes were selected to compare the differences between templates and dummy templates. The current status and prospects of molecular imprinting technology were also proposed.
Collapse
Affiliation(s)
| | | | - Jia Li
- Northwest Minzu University, China.
| | - Li-Na Lu
- Northwest Minzu University, China.
| | | | - Lan Wu
- Northwest Minzu University, China.
| |
Collapse
|
9
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
10
|
Muaz K, Riaz M, Oliveira CAFD, Akhtar S, Ali SW, Nadeem H, Park S, Balasubramanian B. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khurram Muaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | | |
Collapse
|
11
|
Ben Salah-Abbès J, Belgacem H, Ezdini K, Mannai M, Oueslati R, Abbès S. Immunological effects of AFM1 in experimental subchronic dosing in mice prevented by lactic acid bacteria. Immunopharmacol Immunotoxicol 2020; 42:572-581. [PMID: 32938251 DOI: 10.1080/08923973.2020.1824237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Recently, higher contamination by aflatoxin M1 (AFM1) has been detected in many countries. Unfortunately, many tons of contaminated milk and milk byproducts are removed from the food chain to avoid human contamination; as a consequence of higher economic losses. Fewest number of studies are interested to AFM1 detoxification using lactic acid bacteria. MATERIALS AND METHODS In this study, AFM1-degradation using Lactobacillus paracasei BEJ01 (LPBEJ01) was tested in vitro. The preventive effect of LPBEJ01 against AFM1 immunobiological effects in mice are treated orally during 3 weeks with 100 µg AFM1, LPBEJ01 (2 × 109 CFU/ml∼2 mg/kg p.c.) and a mixture of AFM1 and LPBEJ01. RESULTS In vitro LPBEJ01 was found able to absorb 98% of AFM1 (100 µg/ml) in liquid medium after 24 h and more than 95% of AFM1 could be eliminated after 24 h in a solid-state fermentation. Animals treated with AFM1 obtained lower body weight than the control ones. The mitogenic response of spleen mononuclear cells (SMCs) in vivo was higher in mice treated with AFM1. The SMC of mice treated with AFM1 produced lower levels of IL-2, higher levels IL-4 and no effect on IL-10 production. The peritoneal macrophages of mice that treated with AFM1 released less H2O2, while mice exposed orally with the mixture of AFM1 and LPBEJ01 produced higher levels. CONCLUSION LPBEJ01 was safe and it did not have any sign of toxicity. It can be used as an additive for AFM1-detoxification contamination in the food chain in countries suffering from this problem.
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Khawla Ezdini
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Marwa Mannai
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Ridha Oueslati
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences Bizerte, University of Carthage, Tunis, Tunisia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia.,Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| |
Collapse
|
12
|
Pimpitak U, Rengpipat S, Phutong S, Buakeaw A, Komolpis K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Sirirat Rengpipat
- Department of Microbiology Faculty of Science Chulalongkorn University Bangkok10330Thailand
| | - Songchan Phutong
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
- Food Risk Hub Research Unit of Chulalongkorn University Bangkok10330Thailand
| |
Collapse
|
13
|
Hou L, Han X, Wang N. High performance of molecularly imprinted polymer for the selective adsorption of erythromycin in water. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04660-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Xiong J, Peng L, Zhou H, Lin B, Yan P, Wu W, Liu Y, Wu L, Qiu Y. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|