1
|
Saedi S, Jafarian S, Hosseini Ghaboos SH, Nasiraei LR. Formulation optimization of a probiotic low-calorie chocolate milk and investigating its qualitative properties during storage. Heliyon 2024; 10:e36430. [PMID: 39253135 PMCID: PMC11381773 DOI: 10.1016/j.heliyon.2024.e36430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Due to concern regarding the consumption of high amount of sugar in diet and role of diet in combating overweigh and related disease, the aim of present study was to optimize a reduced calorie probiotic chocolate milk formula with suitable physicochemical properties. The formula comprising inulin, stevia (Stevia rebaudiana Bertoni), chia (Salvia hispanica L.) seed gum (CSG), and whey protein concentrate (WPC) which optimized using Box-Behnken design (BBD) and then enriched with an encapsulated probiotic strain Lactobacillus acidophilus (DSM1643). The independent variables included inulin (2-8%), CSG (0.1-0.5 %), stevia (50-100 % replacement of sugar), and WPC (1-3%). The dependent variables were selected as viscosity, average particle size, sedimentation percentage, and general acceptance. Optimization done toward achieving the highest viscosity and general acceptance and the lowest sedimentation percentage and average particle size. The optimal conditions were found to be 7.99 % inulin, 70 % stevia, 0.34 % CSG, and 1 % WPC. Under these conditions, the viscosity, sedimentation percentage, average particle size, and general acceptance of the product were equal to 40.69 mPa s, 2.2 %, 434.221 nm, and 5.1, respectively. Next, the chocolate milk was enriched with at 109 CFU/g probiotic bacteria and evaluated. The probiotic strain was resistant to simulated gastrointestinal conditions and under this condition the free bacterial cells count declined by 8 logCFU/g while the encapsulated cells decreased approximate 3 logCFU/g. The bacteria count did not undergo a significant change until the 5th day of storage. The results showed that the inulin, stevia, CSG, and WPC at optimal concentrations and encapsulated probiotic bacteria could be simultaneously applied to produce a product with good properties. This formula could be considered as a new product with health improving properties, low calorie which is suitable for people suffering from diabetes and obesity.
Collapse
Affiliation(s)
- Shahram Saedi
- Department of Food Science and Technology, Noor Branch, Islamic Azad University, Noor, Iran
| | - Sara Jafarian
- Department of Food Science and Technology, Noor Branch, Islamic Azad University, Noor, Iran
| | | | - Leila Rozbeh Nasiraei
- Department of Food Science and Technology, Noor Branch, Islamic Azad University, Noor, Iran
| |
Collapse
|
2
|
Perković G, Martinović J, Šelo G, Bucić-Kojić A, Planinić M, Ambrus R. Characterization of Grape Pomace Extract Microcapsules: The Influence of Carbohydrate Co-Coating on the Stabilization of Goat Whey Protein as a Primary Coating. Foods 2024; 13:1346. [PMID: 38731717 PMCID: PMC11083019 DOI: 10.3390/foods13091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Both grape pomace and whey are waste products from the food industry that are rich in valuable ingredients. The utilization of these two by-products is becoming increasingly possible as consumer awareness of upcycling increases. The biological activities of grape pomace extract (GPE) are diverse and depend on its bioavailability, which is influenced by processes in the digestive system. In this work, goat whey protein (GW) was used as the primary coating to protect the phenolic compounds of GPE during the spray drying process. In addition, trehalose (T), sucrose (S), xylose (X), and maltodextrin (MD) were added to the goat whey proteins as co-coatings and protein stabilizers. All spray drying experiments resulted in microcapsules (MC) with a high encapsulation efficiency (77.6-95.5%) and yield (91.5-99.0%) and almost 100% recovery of phenolic compounds during the release test. For o-coumaric acid, the GW-coated microcapsules (MC) showed a bioavailability index of up to 731.23%. A semi-crystalline structure and hydrophilicity were characteristics of the MC coated with 10% T, S, X, or 5% MD. GW alone or in combination with T, S, MD, or X proved to be a promising carrier for polyphenols from grape pomace extract and ensured good bioavailability of these natural antioxidants.
Collapse
Affiliation(s)
- Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (G.P.); (G.Š.); (A.B.-K.)
| | - Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (G.P.); (G.Š.); (A.B.-K.)
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (G.P.); (G.Š.); (A.B.-K.)
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (G.P.); (G.Š.); (A.B.-K.)
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (G.P.); (G.Š.); (A.B.-K.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Gruskiene R, Lavelli V, Sereikaite J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr Polym 2024; 327:121670. [PMID: 38171683 DOI: 10.1016/j.carbpol.2023.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Inulin is a fructan biosynthesized mainly in plants of the Asteraceae family. It is also found in edible vegetables and fruits such as onion, garlic, leek, and banana. For the industrial production of inulin, chicory and Jerusalem artichoke are the main raw material. Inulin is used in the food, pharmaceutical, cosmetic as well biotechnological industries. It has a GRAS status and exhibits prebiotic properties. Inulin can be used as a wall material in the encapsulation process of drugs and other bioactive compounds and the development of their delivery systems. In the review, the use of inulin for the encapsulation of probiotics, essential and fatty oils, antioxidant compounds, natural colorant and other bioactive compounds is presented. The encapsulation techniques, materials and the properties of final products suitable for the delivery into food are discussed. Research limitations are also highlighted.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
4
|
Sibanda T, Marole TA, Thomashoff UL, Thantsha MS, Buys EM. Bifidobacterium species viability in dairy-based probiotic foods: challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol 2024; 15:1327010. [PMID: 38371928 PMCID: PMC10869629 DOI: 10.3389/fmicb.2024.1327010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Bifidobacterium species are essential members of a healthy human gut microbiota. Their presence in the gut is associated with numerous health outcomes such as protection against gastrointestinal tract infections, inflammation, and metabolic diseases. Regular intake of Bifidobacterium in foods is a sustainable way of maintaining the health benefits associated with its use as a probiotic. Owing to their global acceptance, fermented dairy products (particularly yogurt) are considered the ideal probiotic carrier foods. As envisioned in the definition of probiotics as "live organisms," the therapeutic functionalities of Bifidobacterium spp. depend on maintaining their viability in the foods up to the point of consumption. However, sustaining Bifidobacterium spp. viability during the manufacture and shelf-life of fermented dairy products remains challenging. Hence, this paper discusses the significance of viability as a prerequisite for Bifidobacterium spp. probiotic functionality. The paper focuses on the stress factors that influence Bifidobacterium spp. viability during the manufacture and shelf life of yogurt as an archetypical fermented dairy product that is widely accepted as a delivery vehicle for probiotics. It further expounds the Bifidobacterium spp. physiological and genetic stress response mechanisms as well as the methods for viability retention in yogurt, such as microencapsulation, use of oxygen scavenging lactic acid bacterial strains, and stress-protective agents. The report also explores the topic of viability determination as a critical factor in probiotic quality assurance, wherein, the limitations of culture-based enumeration methods, the challenges of species and strain resolution in the presence of lactic acid bacterial starter and probiotic species are discussed. Finally, new developments and potential applications of next-generation viability determination methods such as flow cytometry, propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), next-generation sequencing, and single-cell Raman spectroscopy (SCRS) methods are examined.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
- Department of Biology, National of University of Lesotho, Maseru, Lesotho
| | - Tlaleo Azael Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Mapitsi S. Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Mohamadzadeh M, Fazeli A, Shojaosadati SA. Polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics to improve stability and viability in the gastrointestinal tract: A review. Int J Biol Macromol 2024; 259:129287. [PMID: 38211924 DOI: 10.1016/j.ijbiomac.2024.129287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Ahmad Fazeli
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
6
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10189-w. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
7
|
Frakolaki G, Giannou V, Tzia C. Encapsulation of Bifidobacterium animalis subsp. lactis Through Emulsification Coupled with External Gelation for the Development of Synbiotic Systems. Probiotics Antimicrob Proteins 2023; 15:1424-1435. [PMID: 36173590 PMCID: PMC10491698 DOI: 10.1007/s12602-022-09993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Aim of this work was the development of integrated and complex encapsulating systems that will provide more efficient protection to the probiotic strain Bifidobacterium animalis subsp. lactis (BB-12) in comparison to the conventional plain alginate beads. Within the scope of this study, the encapsulation of BB-12 through emulsification followed by external gelation was performed. For this purpose, a variety of alginate-based blends, composed of conventional and novel materials, were used. The results demonstrated that alginate beads incorporating 1% carrageenan or 2% nanocrystalline cellulose provided great protection to the viability of the probiotic bacteria during refrigerated storage (survival rates of 50.3% and 51.1%, respectively), as well as in vitro simulation of the gastrointestinal tract (survival rates of 38.7 and 42.0%, respectively). The incorporation of glycerol into the formulation of the beads improved the protective efficiency of the beads to the BB-12 cells during frozen storage, increasing significantly their viability compared to the plain alginate beads. Beads made of milk, alginate 1%, glucose 5%, and inulin 2% provided the best results in all cases. The microstructure of beads was assessed through SEM analysis and showed absence of free bacteria on the surface of the produced beads. Consequently, the encapsulation of BB-12 through emulsification in a complex encapsulating system was proved successful and effective.
Collapse
Affiliation(s)
- Georgia Frakolaki
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Virginia Giannou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
8
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
9
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
10
|
Sakoui S, Derdak R, Pop OL, Vodnar DC, Addoum B, Teleky BE, Elemer S, Elmakssoudi A, Suharoschi R, Soukri A, El Khalfi B. Effect of encapsulated probiotic in Inulin-Maltodextrin-Sodium alginate matrix on the viability of Enterococcus mundtii SRBG1 and the rheological parameters of fermentedmilk. Curr Res Food Sci 2022; 5:1713-1719. [PMID: 36212080 PMCID: PMC9539782 DOI: 10.1016/j.crfs.2022.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
In the current research, Enterococcus mundtii SRBG1 newly isolated from Bat guano was encapsulated using spray drying technique to create a probiotic powder using six combinations of inulin, maltodextrin and sodium alginate. The encapsulation yield, moisture content, physical characteristics, and shape were investigated. Microcapsules yields ranged from 67 to 85 percent, which is consistent with typical B-290 spray-drier yields. The moisture content showed to increase (4 ± 0.15%) with the addition of sodium alginate to inulin and maltodextrin. In the gastrointestinal conditions (simulated gastric juice and bile salts), it was shown that the viability of probiotic cells in capsules was higher than that of free cells. This demonstrated the effectiveness of combining inulin and maltodextrin to encapsulate substances in surviving in gastro-intestinal conditions. Additionally, we evaluated the non-encapsulated and encapsulated SRBG1 by assessing their impact on the rheological parameters of fermented milk. The results showed that in the absence of sodium alginate the viscosity of milk was lower than with the other protectors, which was confirmed by the quick acidification of the fermented milk by microcapsules containing sodium alginate. Enterococcus mundtii SRBG1 isolated from Bat guano was encapsulated by spray drying. Six combinations of inulin, maltodextrin and sodium alginate were used. Microcapsules yields ranged from 67 to 85 percent. Inulin and maltodextrin were effective in protecting SRBG1. In the absence of sodium alginate the viscosity of fermented milk decreased.
Collapse
|
11
|
Rodrigues F, Cedran M, Pereira G, Bicas J, Sato H. Effective encapsulation of reuterin-producing Limosilactobacillus reuteri in alginate beads prepared with different mucilages/gums. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00737. [PMID: 35686007 PMCID: PMC9171447 DOI: 10.1016/j.btre.2022.e00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
The mainly aim of this study was to use mucilaginous solutions obtained from tamarind, mutamba, cassia tora, psyllium and konjac powdered to encapsulate reuterin-producing Limosilactobacillus reuteri in alginate beads by extrusion technique. In the particles were determined the bacterial encapsulation efficiency, cell viability during storage and survival under simulated gastric and intestinal conditions. Moreover, the reuterin production, its entrapment into the beads and the influence on viability of encapsulated microorganism were evaluated. Scanning electron microscopy and Fourier Transform Infrared spectroscopy were employed to characterize the produced particles. The beads showed a relatively spherical shape with homogenous distribution of L. reuteri. The use of gums and mucilages combined with alginate improved the encapsulation efficiency (from 93.2 to 97.4%), the viability of encapsulated bacteria during refrigerated storage (especially in prolonged storage of 20, 30 and 60 days) and the survival after exposure to gastric and enteric environments (from 67.7 to 76.6%). The L. reuteri was able to produce reuterin via bioconversion of glycerol in the film-forming solutions, and the entrapment of the metabolite was improved using konjac, mutamba and tamarind mucilaginous solutions in the encapsulation process (45, 44.57 and 41.25%, respectively). Thus, our findings confirm the great potential of these hydrocolloids to different further purposes, enabling its application as support material for delivery of chemical or biological compounds.
Collapse
Affiliation(s)
- F.J. Rodrigues
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M.F. Cedran
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - G.A. Pereira
- School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - J.L. Bicas
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - H.H. Sato
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
12
|
Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Encapsulation of Different Types of Probiotic Bacteria within Conventional/Multilayer Emulsion and Its Effect on the Properties of Probiotic Yogurt. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7923899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microencapsulation of probiotic cells within emulsion is an efficient method to enhance the viability of probiotic bacteria. In the present study, free and encapsulated probiotic cells (Lactobacillus rhamnosus and Lactobacillus plantarum) in simple and multilayer emulsions were used to produce a set of probiotic yogurts. In all samples, an increasing trend in syneresis and acidity values and a decreasing trend in pH and viability of probiotic cells were observed during the storage time. However, the changes in these parameters were more significant for free-loaded probiotic samples. Moreover, the free cells showed poor survival in the yogurt samples by decreasing the viable cell count of probiotics from 7.71–7.59 logs CFU/mL to 6.93–6.82 log CFU/mL during storage, while encapsulation in the multilayer emulsion showed an insignificant reduction from 7.65–7.59 logs CFU/mL to 7.55–7.45 log CFU/mL at the end of storage. The obtained results showed that the type of probiotic bacteria had no significant effects on the physicochemical and structural properties of samples. However, encapsulating probiotics in multilayer emulsion led to a more homogenous structure in yogurt. The sensorial properties were also not affected by the probiotic type and the encapsulation method. Consequently, the multilayer emulsion can provide an ideal delivery carrier for encapsulating probiotic bacteria in dairy products.
Collapse
|
14
|
He BL, Xiong Y, Hu TG, Zong MH, Wu H. Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies. Crit Rev Food Sci Nutr 2022; 63:8048-8065. [PMID: 35319324 DOI: 10.1080/10408398.2022.2054934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of Bifidobacterium are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of Bifidobacterium spp. and their applications in food have gradually been widely concerned. The main purpose of this review is to comprehensively introduce general features, colonization methods, and safety of Bifidobacterium spp. in the human gut, highlighting its health benefits and industrial applications. On this basis, the existing limitations and scope for future research are also discussed. Bifidobacteria have beneficial effects on the host's digestive system, immune system, and nervous system. However, the first prerequisite for functioning is to have enough live bacteria before consumption and successfully colonize the colon after ingestion. At present, strain breeding, optimization (e.g., selecting acid and bile resistant strains, adaptive evolution, high cell density culture), and external protection technology (e.g., microencapsulation and protectants) are the main strategies to address these challenges in food application.
Collapse
Affiliation(s)
- Bao-Lin He
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Yong Xiong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Guangzhou, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
15
|
How Y, Lai K, Pui L, In LL. Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu‐Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Ka‐Wai Lai
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Liew‐Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| | - Lionel Lian‐Aun In
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Kuala Lumpur Malaysia
| |
Collapse
|
16
|
KAREENA A, SIRIPONGVUTIKORN S, USAWAKESMANEE W, WICHIENCHOT S. In vitro evaluation of probiotic bacteria and yeast growth, pH changes and metabolites produced in a pure culture system using protein base products with various added carbon sources. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
AKAN ECEM. The Effect of Fermentation Time and Yogurt Bacteria on the Physicochemical, Microbiological and Antioxidant Properties of Probiotic Goat Yogurts. AN ACAD BRAS CIENC 2022; 94:e20210875. [DOI: 10.1590/0001-3765202220210875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- ECEM AKAN
- Aydin Adnan Menderes University, Turkey
| |
Collapse
|
18
|
POURJAVID H, ATAEI M, POURAHMAD R, ANVAR AA, BEHMADI H. Improvement of the quality parameters of a novel synbiotic yogurt sauce using microencapsulated Lactobacillus paracasei and natural prebiotics. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Homa BEHMADI
- Agricultural Research, Education and Extension Organization – AREEO, Iran
| |
Collapse
|
19
|
Shori AB. Application of Bifidobacterium spp in beverages and dairy food products: an overview of survival during refrigerated storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
KAVAS N, KAVAS G, ATEŞ M, KAPLAN M, ŞATIR G, KINIK Ö. Determination of probiotic characteristics and resistance to biological barriers under in vitro gastrointestinal conditions in goat cheese produced using microencapsulated probiotic bacteria. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.34620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Denktaş C, Yilmaz Baysoy D, Bozdoğan A, Bozkurt HS, Bozkurt K, Özdemir O, Yilmaz M. Development and characterization of sodium alginate/
bifidobacterium probiotic
biohybrid material used in tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.52086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cenk Denktaş
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | | | - Altan Bozdoğan
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | - Hüseyin Sancar Bozkurt
- Maltepe University Medicine Faculty Internal Medicine, Clinic of Gastroenterology Istanbul Turkey
| | - Kutsal Bozkurt
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | - Orhan Özdemir
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| | - Mehmet Yilmaz
- Faculty of Arts and Sciences, Physics Department Yildiz Technical University Istanbul Turkey
| |
Collapse
|
22
|
Hovjecki M, Miloradovic Z, Mirkovic N, Radulovic A, Pudja P, Miocinovic J. Rheological and textural properties of goat's milk set-type yoghurt as affected by heat treatment, transglutaminase addition and storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5898-5906. [PMID: 33798268 DOI: 10.1002/jsfa.11242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/03/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Production of goat's milk set-style yoghurt encounters challenges in achieving the texture characteristic for this type of product, primarily due to protein composition of this milk. This study evaluated the effects of using microbial transglutaminase (mTGase) concomitantly with starter culture in the production of goat's milk yoghurt - a method that has not been employed with this milk type until now- indicating the potential of the enzyme to change yoghurt's textural properties. Goat's milk set yoghurts were produced from milk heated at 72 °C/30 s and 90 °C/5 min, without (G72 and G90) and with mTGase (G72TG and G90TG) and starter culture addition. Protein profiles of goat's milks and yoghurts were also examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Yoghurts were evaluated for rheological properties, texture, microbiological and sensory profile over 2 weeks to study the influence of mTGase, pasteurization and storage. RESULTS The enzyme caused significant increases of storage moduli at the end of fermentation: 8.32 ± 0.27 Pa (G90TG) and 2.89 ± 0.18 Pa (G72TG) vs. 6.13 ± 0.07 Pa (G90) and 1.27 ± 0.18 Pa (G72) without enzyme. Lower loss tangent values indicated the enhanced elastic character of the gels with enzyme. Enzyme increased yoghurt's firmness from 49.69 ± 2.61 g (G90) to 60.81 ± 5.29 g (G90TG) after 1 day and from 58.21 ± 0.53 g (G90) to 80.45 ± 0.59 g (G90TG) after 15 days' storage. Enzyme improved starter bacteria survivability during storage of G72TG yoghurt. CONCLUSION mTGase can be used simultaneously with the starter culture to improve the rheological properties and texture of goat's milk yoghurt, without deteriorating effect on its flavour. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Hovjecki
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Zorana Miloradovic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Nemanja Mirkovic
- Department of Food Microbiology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Ana Radulovic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Predrag Pudja
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Jelena Miocinovic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Ferreira Leite Ladislau H, Silva de Farias TG, Mendonça Soares BL, Medeiros JADC, Ferrão Castelo Branco Melo N, Stamford–Arnaud TM, Stamford TCM, Stamford TLM. The effect of co‐encapsulation of
Lactobacillus rhamnosus
GG ATCC 53103 with inulin on alginate/chitosan matrix: the viability in fermented soy blend and simulated digestive system. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hayane Ferreira Leite Ladislau
- Laboratório de Microbiologia dos Alimentos Departamento de Nutrição Centro de Ciências da Saúde Universidade Federal de Pernambuco Cidade Universitária Av. da Engenharia, s/n°CEP: 50670‐420 Recife PE Brazil
| | - Thaísa Gabriela Silva de Farias
- Laboratório de Microbiologia dos Alimentos Departamento de Nutrição Centro de Ciências da Saúde Universidade Federal de Pernambuco Cidade Universitária Av. da Engenharia, s/n°CEP: 50670‐420 Recife PE Brazil
- Laboratório de Microbiologia Aplicada Centro de Ciências Médicas Universidade Federal de Pernambuco Microbiologia e Imunologia Cidade Universitária Av. da Engenharia, s/n°, 2° andarCEP: 50.670‐420 Recife PE Brazil
| | - Bruna Lúcia Mendonça Soares
- Laboratório de Microbiologia dos Alimentos Departamento de Nutrição Centro de Ciências da Saúde Universidade Federal de Pernambuco Cidade Universitária Av. da Engenharia, s/n°CEP: 50670‐420 Recife PE Brazil
| | - José Alberto da Costa Medeiros
- Laboratório de Microbiologia dos Alimentos Departamento de Nutrição Centro de Ciências da Saúde Universidade Federal de Pernambuco Cidade Universitária Av. da Engenharia, s/n°CEP: 50670‐420 Recife PE Brazil
- Laboratório de Microbiologia Aplicada Centro de Ciências Médicas Universidade Federal de Pernambuco Microbiologia e Imunologia Cidade Universitária Av. da Engenharia, s/n°, 2° andarCEP: 50.670‐420 Recife PE Brazil
| | - Natália Ferrão Castelo Branco Melo
- Laboratório de Microbiologia dos Alimentos Departamento de Nutrição Centro de Ciências da Saúde Universidade Federal de Pernambuco Cidade Universitária Av. da Engenharia, s/n°CEP: 50670‐420 Recife PE Brazil
| | - Thatiana Montenegro Stamford–Arnaud
- Laboratório de Microbiologia Aplicada Centro de Ciências Médicas Universidade Federal de Pernambuco Microbiologia e Imunologia Cidade Universitária Av. da Engenharia, s/n°, 2° andarCEP: 50.670‐420 Recife PE Brazil
| | - Thayza Christina Montenegro Stamford
- Laboratório de Microbiologia Aplicada Centro de Ciências Médicas Universidade Federal de Pernambuco Microbiologia e Imunologia Cidade Universitária Av. da Engenharia, s/n°, 2° andarCEP: 50.670‐420 Recife PE Brazil
| | - Tânia Lucia Montenegro Stamford
- Laboratório de Microbiologia dos Alimentos Departamento de Nutrição Centro de Ciências da Saúde Universidade Federal de Pernambuco Cidade Universitária Av. da Engenharia, s/n°CEP: 50670‐420 Recife PE Brazil
| |
Collapse
|
24
|
Khorshidi M, Heshmati A, Taheri M, Karami M, Mahjub R. Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci Nutr 2021; 9:3942-3953. [PMID: 34262750 PMCID: PMC8269586 DOI: 10.1002/fsn3.2398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to investigate the viability of microencapsulated and coated Lactobacillus acidophilus in yogurt during storage in a refrigerator for 28 days and in simulated gastrointestinal conditions. Furthermore, the effect of the microencapsulated and coated L. acidophilus on the physicochemical, textural, and sensory properties of yogurt was assessed. Lactobacillus acidophilus was microencapsulated in sodium alginate and coated with xanthan and/or whey protein. The coating led to the increase in the microcapsule diameter and the microencapsulation yield, while it led to the decreased moisture and water activity (aw) of the microcapsule. The survival of L. acidophilus microcapsule coated with whey protein and xanthan in yogurt during storage and exposure to simulated gastrointestinal conditions was significantly increased. Compared with free bacteria, the L. acidophilus microcapsule coated with whey protein and xanthan had the increased viability in yogurt until 2.16 log CFU/g during storage and 3.52 log CFU/g in simulated gastrointestinal conditions. After the 28th day of storage, a significant difference between the acidity and pH of yogurt containing coated and microencapsulated L. acidophilus and control yogurt was not observed. However, yogurt containing free L. acidophilus had lower pH and higher acidity and showed a significant difference (p < .05) with other samples. Although the coating of L. acidophilus microcapsule did not affect the sensory properties and gumminess of yogurt, it increased the firmness, adhesiveness, and viscosity of this product and caused a significant decrease in syneresis and cohesiveness. In general, the application of whey protein and xanthan coating on L. acidophilus microcapsule surface could increase the viability of this probiotic in yogurt during storage and in simulated gastrointestinal conditions and improve the texture attributes of yogurt.
Collapse
Affiliation(s)
- Mina Khorshidi
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Ali Heshmati
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mehdi Taheri
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mostafa Karami
- Faculty of Food Science and TechnologyBu‐Ali Sina University of HamedanHamedanIran
| | - Reza Mahjub
- Department of Pharmacology and ToxicologySchool of Pharmacy, Medicinal Plants and Natural Products Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
25
|
Maleki M, Ariaii P, Sharifi Soltani M. Fortifying of probiotic yogurt with free and microencapsulated extract of Tragopogon Collinus and its effect on the viability of Lactobacillus casei and Lactobacillus plantarum. Food Sci Nutr 2021; 9:3436-3448. [PMID: 34262704 PMCID: PMC8269579 DOI: 10.1002/fsn3.2250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, the effect of free and microencapsulation of Tragopogon Collins extract (TPE) on the properties of probiotic yogurt was investigated. For this purpose, first, TPE was extracted by ultrasound method. The amounts of phenolic and flavonoid compounds in TPE were 890.04 mg/g gallic acid and 512.76 mg/g extract (respectively), and it had high antioxidant and antimicrobial properties. Then, the extract was encapsulated by maltodextrin-whey protein concentrate. The results related to the particle size, zeta-potential, and microencapsulation efficiency of the TPE microencapsulation were 93.87 nm, 18.99 MV, and 64.35% respectively. In order to investigate the effect of nano- and free TPE on the properties of yogurt during a 15-day storage period of 5 treatments including control, nano- and free TPE at 750 and 1,000 ppm were provided and the physicochemical properties, probiotic bacteria viability, and sensory properties were investigated. The results showed that adding TPE to yogurt affects the physicochemical properties, probiotic bacterial viability, and sensory properties were investigated. The results showed that adding TPE to yogurt affects the physicochemical properties. TPE samples had lower pH, less syneresis, and more acidity, viscosity, and antioxidant properties compared to the control sample (p < .05). Furthermore, in these samples, the viability of probiotic bacteria during storage was higher than the control treatment and the sensory properties were acceptable. In most cases, better results were observed in nano-TPE treatment. Therefore, by industrial production of probiotic yogurt containing nano-TPE as a functional food, a new choice will be provided for consumers of dairy products that would have more desirable nutritional value and sensory properties.
Collapse
Affiliation(s)
- Mohammad Maleki
- Department of Food Science and TechnologyIslamic Azad University, Ayatollah Amoli BranchAmolIran
| | - Peiman Ariaii
- Department of Food Science and TechnologyIslamic Azad University, Ayatollah Amoli BranchAmolIran
| | - Mahdi Sharifi Soltani
- Department of VeterinaryAgriculture FacultyIslamic Azad University, Chalous BranchChalousIran
| |
Collapse
|
26
|
|
27
|
Torabi F, Jooyandeh H, Noshad M. Evaluation of physicochemical, rheological, microstructural, and microbial characteristics of synbiotic ultrafiltrated white cheese treated with transglutaminase. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fereshteh Torabi
- Department of Food Science and Technology Faculty of Animal Science and Food Technology Agricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Hossein Jooyandeh
- Department of Food Science and Technology Faculty of Animal Science and Food Technology Agricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| | - Mohammad Noshad
- Department of Food Science and Technology Faculty of Animal Science and Food Technology Agricultural Sciences and Natural Resources University of Khuzestan Mollasani Iran
| |
Collapse
|
28
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
29
|
Deshwal GK, Tiwari S, Kumar A, Raman RK, Kadyan S. Review on factors affecting and control of post-acidification in yoghurt and related products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Chen Y, Meenu M, Baojun X. A Narrative Review on Microencapsulation of Obligate Anaerobe Probiotics Bifidobacterium, Akkermansia muciniphila, and Faecalibacterium prausnitzii. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1871008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yining Chen
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Maninder Meenu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Xu Baojun
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
31
|
ARAÚJO NG, SILVA JBD, MOREIRA RT, CARDARELLI HR. Effect of temperature and concentration of βeta-galactosidase on the composition of reduced lactose pasteurized goat milk. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.05220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Hayayumi-Valdivia M, Márquez-Villacorta LF, Pretell-Vásquez CC. Effect of microencapsulation and mango peel powder on probiotics survival in ice cream. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2021. [DOI: 10.1590/1981-6723.30919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract This study evaluated the effect of microencapsulation and addition of mango peel powder on the survival of Lactobacillus acidophilus and Bifidobacterium lactis, overrun, apparent viscosity, and overall acceptability of symbiotic ice cream during storage at -20 °C for 180 days. Six formulations of vanilla-flavored ice cream were prepared: three with addition of probiotic cultures at a concentration of 108 CFU/g and 0, 2%, and 3% mango peel powder microencapsulated in a sodium alginate matrix, and three with free addition. Analytical evaluations were performed after 1, 30, 60, 90, 120 and 180 days of storage. The results showed that microencapsulation of probiotics and prebiotics statistically influenced (p < 0.05) the characteristics evaluated. The formulation with microencapsulated probiotics and 2% mango peel powder was considered as the best product. This formulation is promising for future commercial application as a functional food because, at the end 180 days of storage, it showed probiotics population >106 CFU/g, 72.97% overrun, 292 mPA apparent viscosity, and good overall acceptance (7.6 points) equivalent to “I like it very much”.
Collapse
|
33
|
Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int 2020; 137:109682. [DOI: 10.1016/j.foodres.2020.109682] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
|
34
|
Afzaal M, Saeed F, Saeed M, Azam M, Hussain S, Mohamed AA, Alamri MS, Anjum FM. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal and thermal conditions. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1826513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Afzaal
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saeed
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Azam
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Shahzad Hussain
- Department of Food Science & Nutrition, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohamed S. Alamri
- Department of Food Science & Nutrition, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
35
|
ANJOS TRD, CAVICCHIOLI VQ, LIMA JAS, VASCONCELLOS AN, VAZ ACN, ROSSI GAM, CAMPOS-GALVÃO MEM, TODOROV SD, MATHIAS LA, SCHOCKEN-ITURRINO RP, NERO LA, VIDAL AMC. Unsatisfactory microbiological aspects of UHT goat milk, soymilk and dairy beverage of goat milk and soy protein: A public health issue. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.14019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Verruck S, Silva KJ, de Oliveira Santeli H, Scariot MC, Venturelli GL, Prudencio ES, Arisi ACM. Bifidobacterium animalis ssp. lactis BB-12 enumeration by quantitative PCR assay in microcapsules with full-fat goat milk and inulin-type fructans. Food Res Int 2020; 133:109131. [PMID: 32466908 DOI: 10.1016/j.foodres.2020.109131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
The current study was conducted to develop a quantitative polymerase chain reaction (qPCR) assay for Bifidobacterium animalis ssp. lactis BB-12 quantification in microcapsules matrix with full-fat goat milk and inulin-type fructans. DNA was isolated from milk, feed solutions (before spray drying) and microcapsules (after spray drying) using DNAzol. Two primer pairs targeting Bal-23S or Tuf sequences were evaluated by qPCR. The qPCR efficiency was higher (89.5%) using the Tuf primers than Bal-23S primers (84.8%). Tuf primer pair was able to selectively detect B. animalis ssp. lactis BB-12. After, quantification of bifidobacteria in the microcapsules matrix by Tuf qPCR assay was compared to conventional enumeration by plate counting. The analysis of probiotic feed solutions and microcapsules showed higher (P < 0.05) bacterial enumeration determined by Tuf qPCR assay compared to those obtained by plate counting. This qPCR assay was considered a rapid and sensitive alternative for the quantification of B. animalis ssp. lactis BB-12 in probiotic microcapsules compared to plate counting.
Collapse
Affiliation(s)
- Silvani Verruck
- Dairy Technology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Kelly Justin Silva
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Helena de Oliveira Santeli
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Mirella Christine Scariot
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Gustavo Luiz Venturelli
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Elane Schwinden Prudencio
- Dairy Technology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Maisonnave Arisi
- Molecular Biology Laboratory, Food Science and Technology Department, Agrarian Science Center, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
37
|
Peng M, Tabashsum Z, Anderson M, Truong A, Houser AK, Padilla J, Akmel A, Bhatti J, Rahaman SO, Biswas D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr Rev Food Sci Food Saf 2020; 19:1908-1933. [PMID: 33337097 DOI: 10.1111/1541-4337.12565] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic-like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic-like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short-chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic-like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Mary Anderson
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Andy Truong
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Ashley K Houser
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Joselyn Padilla
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Ahlam Akmel
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Jacob Bhatti
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Sciences, University of Maryland, College Park, Maryland
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland.,Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland
| |
Collapse
|
38
|
Dimitrellou D, Kandylis P, Lević S, Petrović T, Ivanović S, Nedović V, Kourkoutas Y. Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108501] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Afzaal M, Khan AU, Saeed F, Ahmed A, Ahmad MH, Maan AA, Tufail T, Anjum FM, Hussain S. Functional exploration of free and encapsulated probiotic bacteria in yogurt and simulated gastrointestinal conditions. Food Sci Nutr 2019; 7:3931-3940. [PMID: 31890171 PMCID: PMC6924303 DOI: 10.1002/fsn3.1254] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
The core objective of the current study was to evaluate the effect of microencapsulation on the viability and stability of probiotic bacteria in yogurt and simulated gastrointestinal conditions. For this purpose, probiotic bacteria were encapsulated with sodium alginate and carrageenan by encapsulator. Yogurt was prepared with the incorporation of free and encapsulated probiotic bacteria and was analyzed for physicochemical, microbiological, and sensorial attributes. Encapsulation and storage exhibited a significant (p < .05) effect on different parameters of yogurt. An increasing trend in syneresis and acidity while a decreasing trend in viscosity, pH, viability, and stability were observed. The value of syneresis increased from 2.27 ± 0.17 to 2.9 ± 0.14 and acidity from 0.48 ± 0.04 to 0.64 ± 0.01 during 4 weeks of storage. The value of viscosity decreased from 3.68 ± 0.21 to 2.42 ± 0.09 and pH from 4.88 ± 0.31to 4.43 ± 0.36 during 28 days of storage. Unencapsulated (free) cells exhibited poor survival. The viable cell count of probiotic bacteria in the free-state in yogurt was 9.97 logs CFU/ml at zero-day that decreased to 6.12 log CFU/ml after 28 days. However, encapsulation improved the viability of the probiotics in the prepared yogurt and GIT. The cell count of probiotics encapsulated with sodium alginate and carrageenan was 9.91 logs CFU/ml and 9.89 logs CFU/ml, respectively, at zero-day that decreased to 8.74 logs CFU/ml and 8.39 log CFU/ml, respectively. Free cells (unencapsulated) showed very poor survival. Similarly, during in vitro gastrointestinal assay, the survival rate of encapsulated probiotic bacteria in simulated gastric solution and intestinal solutions was higher than that of free cells. In the case of encapsulated bacteria, only 3 logs while for free cells, 7 log reduction was recorded. Sodium alginate microcapsules exhibited better release profile than carrageenan. Conclusively, microencapsulation improved the survival of probiotic bacteria in carrier food as well as in simulated gastrointestinal condition.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Azmat Ullah Khan
- Department of Food Science and Human NutritionUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Haseeb Ahmad
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Abid Aslam Maan
- National Institute of Science & TechnologyUniversity of AgricultureFaisalabadPakistan
| | - Tabussam Tufail
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | | - Shahzad Hussain
- College of Food and Agricultural SciencesKing Saud, UniversityRiyadhSaudi Arabia
| |
Collapse
|
40
|
Composition and isolation of goat cheese whey oligosaccharides by membrane technology. Int J Biol Macromol 2019; 139:57-62. [DOI: 10.1016/j.ijbiomac.2019.07.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/29/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023]
|
41
|
Mehdizadeh T, Mojaddar Langroodi A, Shakouri R, Khorshidi S. Physicochemical, microbiological, and sensory characteristics of probiotic yogurt enhanced with
Anethum graveolens
essential oil. J Food Saf 2019. [DOI: 10.1111/jfs.12683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Ali Mojaddar Langroodi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| | - Roghieh Shakouri
- Agricultural and Natural Resources Research Center of West Azarbaijan Urmia Iran
| | - Sonia Khorshidi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary MedicineUrmia University Urmia Iran
| |
Collapse
|
42
|
Impact of Different Gums on Textural and Microbial Properties of Goat Milk Yogurts during Refrigerated Storage. Foods 2019; 8:foods8050169. [PMID: 31109035 PMCID: PMC6560400 DOI: 10.3390/foods8050169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/25/2022] Open
Abstract
In this study, the impact of seven different gums on textural and microbiological properties of goat milk yogurt during refrigerated storage was investigated. The results showed that yogurt containing xanthan and locust bean gums had enhanced firmness, consistency, cohesiveness, and viscosity during four weeks of storage compared to the control and yogurt fortified with other gums (p < 0.05). The addition of gums also helped to maintain the microbial viability of the yogurt culture and the probiotic Bifidobacterium spp. This study thus demonstrated that these gums could be used in the production of goat milk yogurt with enhanced textural properties.
Collapse
|