1
|
Hindieh P, Yaghi J, Assaf JC, Chokr A, Atoui A, Louka N, Khoury AE. Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents. AMB Express 2024; 14:112. [PMID: 39361085 PMCID: PMC11450114 DOI: 10.1186/s13568-024-01770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
Collapse
Affiliation(s)
- Pamela Hindieh
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
- Ecole Doctorale "Sciences et Santé", Université Saint-Joseph de Beyrouth, Campus des Sciences Médicales et Infirmières, Riad El Solh, Beirut, Lebanon
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Ali Atoui
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche TVA, Laboratoire de mycologie et sécurité des aliments (LMSA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn, Lebanon
| |
Collapse
|
2
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
3
|
Awadelkareem AM, Siddiqui AJ, Noumi E, Ashraf SA, Hadi S, Snoussi M, Badraoui R, Bardakci F, Ashraf MS, Danciu C, Patel M, Adnan M. Biosynthesized Silver Nanoparticles Derived from Probiotic Lactobacillus rhamnosus (AgNPs-LR) Targeting Biofilm Formation and Quorum Sensing-Mediated Virulence Factors. Antibiotics (Basel) 2023; 12:986. [PMID: 37370305 DOI: 10.3390/antibiotics12060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bacterial pathogens have developed resistance to antimicrobial agents that have created a global threat to human health and environment. As a novel approach to combating antimicrobial resistance (AMR), targeting bacteria's virulent traits that can be explained by quorum sensing (QS) is considered to be one of the most promising approaches. In the present study, biologically synthesized silver nanoparticles derived from Lactobacillus rhamnosus (AgNPs-LR) were tested against three Gram-negative bacteria to determine whether they inhibited the formation of biofilms and triggered the virulence factors controlled by QS. In C. violaceum and S. marcescens, a remarkable inhibition (>70%) of QS-mediated violacein and prodigiosin production was recorded, respectively. A dose-dependent decrease in virulence factors of P. aeruginosa (pyocyanin, pyoverdine, LasA protease, LasB elastase and rhamnolipid production) was also observed with AgNPs-LR. The biofilm development was reduced by 72.56%, 61.70%, and 64.66% at highest sub-MIC for C. violaceum, S. marcescens and P. aeruginosa, respectively. Observations on glass surfaces have shown remarkable reductions in biofilm formation, with less aggregation of bacteria and a reduced amount of extra polymeric materials being formed from the bacteria. Moreover, swimming motility and exopolysaccharides (EPS) was also found to reduce in the presence of AgNPs-LR. Therefore, these results clearly demonstrate that AgNPs-LR is highly effective in inhibiting the development of biofilms and the QS-mediated virulent traits of Gram-negative bacteria. In the future, AgNPs-LR may be used as an alternative to conventional antibiotics for the treatment of bacterial infections after careful evaluation in animal models, especially for the development of topical antimicrobial agents.
Collapse
Affiliation(s)
- Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Sibte Hadi
- Department of Forensic Sciences, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Riyadh ELM University, Riyadh, Saudi Arabia
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
4
|
Mgomi FC, Yang YR, Cheng G, Yang ZQ. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023; 5:100118. [PMID: 37125395 PMCID: PMC10139968 DOI: 10.1016/j.bioflm.2023.100118] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The continuous growth of pathogenic microorganisms and associated biofilms poses severe public health challenges, particularly in food and clinical environments. However, these difficulties have enabled scientists to develop novel and safe methods for combating pathogens. The use of biofilms produced by lactic acid bacteria (LAB) against pathogenic bacteria has recently gained popularity. This review provides an in-depth look at LAB biofilms, their distribution, and mechanisms of action against pathogenic bacteria. More importantly, the bioactive substances produced by LAB-forming biofilm may be active against undesirable microorganisms and their products, which is of great interest in improving human health. Therefore, this review implies that a combination of LAB biofilms and other LAB products like bacteriocins could provide viable alternatives to traditional methods of combating pathogenic microorganisms and their biofilms.
Collapse
|
5
|
Nahle S, Atoui A, Assaf JC, El Khoury A, Louka N, Chokr A. Time-Dependent Effect of Surface Material on Lactobacillus rhamnosus GG Biofilm Formation and Gene Expression. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261721102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
6
|
Stability and Survivability of Alginate Gum-Coated Lactobacillus rhamnosus GG in Simulated Gastrointestinal Conditions and Probiotic Juice Development. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3660968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Survivability of probiotics is severely affected by harsh gastrointestinal conditions. In the present study, microbeads of Lactobacillus rhamnosus GG were formulated using alginate (1.5% w/v) and combination of alginate (1.5% w/v) with xanthan gum (0.5% w/v) through an emulsion technique to improve bacterial viability in low pH orange juice and in gastrointestinal conditions. The microbeads were tested for encapsulation efficiency, survivability in bile salt, SGF (simulated gastric juice), SIF (simulated intestinal fluid), and storage stability. Probiotic orange juice was formulated and tested for physicochemical parameters (pH, titratable acidity, and total sugars) and sensorial properties during storage. Gum-coated alginate microbeads (T3) showed higher encapsulation efficiency, i.e., 95.2% compared to alginate microbeads (T2), i.e., 86.85%. Similarly, T3 showed the highest resistance against bile salt (8.50 log CFU/g), SGF (7.95 log CFU/g), and SIF (8.0 log CFU/g) during 80 min exposure compared to T2 and free cells. The viability of gum-coated alginate beads (T3) remained above 107 CFU/g in gastrointestinal conditions and at the end of 21 days storage (8.3 log CFU/mL). All physicochemical parameters of probiotic juice were significantly (
) decreased with respect to storage except acidity. In addition, minimal changes in physicochemical parameters were observed in T3 compared to other treatments. Treatment had no significant impact on the sensory characteristics of juice, but storage had a significant effect (
) on the sensory characteristics of juice. The alginate gum microbeads improve the survivability of probiotics for targeted delivery. Hence, encapsulated probiotics can be used for functional beverage development to take advantage of their therapeutic benefits.
Collapse
|
7
|
Mahjoory Y, Mohammadi R, Hejazi MA, Nami Y. Antifungal activity of potential probiotic Limosilactobacillus fermentum strains and their role against toxigenic aflatoxin-producing aspergilli. Sci Rep 2023; 13:388. [PMID: 36617580 PMCID: PMC9826785 DOI: 10.1038/s41598-023-27721-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
Two major aflatoxin-producing strains are Aspergillus flavus and Aspergillus niger. Probiotic bacteria have been identified as a potential means to fight aspergilli and reduce the availability of aflatoxin (AFs) as well as other food contaminants. In this study, the potential of ABRIIFBI-6 and ABRIIFBI-7 strains to inhibit the growth of aspergilli was investigated. Both strains survived in the simulated gastrointestinal conditions and inhibited the growth of Aspergillus significantly. Auto-aggregation ranged from 67.4 ± 1.9 for ABRIIFBI-6 to 75.8 ± 2.3% for ABRIIFBI-7, and hydrophobicity ranged from 57.3 ± 1.6 to 61.2 ± 1.4% for ABRIIFBI-6 and ranged from 51.2 ± 1.4 to 55.4 ± 1.8% for ABRIIFBI-7. The ranges of coaggregation with Staphylococcus aureus were 51.3 ± 1.7 and 52.4 ± 1.8% for ABRIIFBI-6 and ABRIIFBI-7, respectively, while coaggregation with Bacillus cereus was 57.9 ± 2.1 and 49.3 ± 1.9% for ABRIIFBI-6 and ABRIIFBI-7, respectively. Both strains indicated remarkable sensitivity to clinical antibiotics. According to the analysis of the identified potential probiotics, the findings of this study could significantly contribute to the understanding of the probiotic potential of LAB in dairy products in order to access their probiotic characterization for use as biocontrol of aflatoxin-producing species.
Collapse
Affiliation(s)
- Yalda Mahjoory
- grid.412831.d0000 0001 1172 3536Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- grid.473705.20000 0001 0681 7351Department of Genomics, Branch for Northwest & West Region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mohammad Amin Hejazi
- grid.473705.20000 0001 0681 7351Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research, Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
8
|
A promising innovative technique for mycotoxin detoxification from beverages using biofilms of lactic acid bacteria. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Abou Dib A, Assaf JC, El Khoury A, El Khatib S, Koubaa M, Louka N. Single, Subsequent, or Simultaneous Treatments to Mitigate Mycotoxins in Solid Foods and Feeds: A Critical Review. Foods 2022; 11:3304. [PMCID: PMC9601460 DOI: 10.3390/foods11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mycotoxins in solid foods and feeds jeopardize the public health of humans and animals and cause food security issues. The inefficacy of most preventive measures to control the production of fungi in foods and feeds during the pre-harvest and post-harvest stages incited interest in the mitigation of these mycotoxins that can be conducted by the application of various chemical, physical, and/or biological treatments. These treatments are implemented separately or through a combination of two or more treatments simultaneously or subsequently. The reduction rates of the methods differ greatly, as do their effect on the organoleptic attributes, nutritional quality, and the environment. This critical review aims at summarizing the latest studies related to the mitigation of mycotoxins in solid foods and feeds. It discusses and evaluates the single and combined mycotoxin reduction treatments, compares their efficiency, elaborates on their advantages and disadvantages, and sheds light on the treated foods or feeds, as well as on their environmental impact.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Jean Claude Assaf
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| | - André El Khoury
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
- Correspondence: ; Tel.: +9611421389
| | - Sami El Khatib
- Department of Food Sciences and Technology, Facuty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, Bekaa 1108, Lebanon
| | - Mohamed Koubaa
- TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Université de Technologie de Compiègne, ESCOM—CS 60319, CEDEX, 60203 Compiègne, France
| | - Nicolas Louka
- Centre d’Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Campus des Sciences et Technologies, Université Saint-Joseph de Beyrouth, Mar Roukos, Matn 1104-2020, Lebanon
| |
Collapse
|
10
|
Nikmaram N, Keener KM. Degradation of Aflatoxin M1 in Skim and Whole Milk Using High Voltage Atmospheric Cold Plasma (HVACP) and Quality Assessment. Food Res Int 2022; 162:112009. [DOI: 10.1016/j.foodres.2022.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
|
11
|
The Status Quo of Criminal Responsibility for Aflatoxin Pollution in China: From the Perspective of Judgment Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8212370. [PMID: 36003998 PMCID: PMC9385277 DOI: 10.1155/2022/8212370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022]
Abstract
With the development of the economy, the food safety problems caused by aflatoxin have become increasingly prominent. With regard to the control of aflatoxin pollution, the Chinese government has promulgated a series of legal documents on food safety related to aflatoxin pollution, such as the formulation of industry standards for allowable limits of aflatoxin and various penalties for violators. Although these measures have achieved good results to some extent, there are still many legal problems. This study reviews the current situation of aflatoxin pollution control in food in China. The court judgment documents related to aflatoxin pollution from January 1st 2014 to January 1st 2020 are investigated to analyze the accountability status of aflatoxin pollution treatment in China. Furthermore, this study mainly cross verified the above problems by means of the literature survey and an organization interview and proposed solutions on the basis of in-depth analysis of their causes. Finally, some suggestions are put forward to solve the problem of aflatoxin pollution accountability in China.
Collapse
|
12
|
Xiong J, Wen D, Zhou H, Chen R, Wang H, Wang C, Wu Z, Qiu Y, Wu L. Occurrence of aflatoxin M1 in yogurt and milk in central-eastern China and the risk of exposure in milk consumers. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui A. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/or remove contamination from food and feed products. Biological detoxification processes seem to be the most promising approaches for mycotoxins removal from food. The current review details the newest progress in biological detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degradation, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help produce mycotoxins-free food and feed.
Collapse
|
14
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
15
|
SILVA JVBD, OLIVEIRA CAFD, RAMALHO LNZ. An overview of mycotoxins, their pathogenic effects, foods where they are found and their diagnostic biomarkers. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.48520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
LIMA CMG, COSTA HRD, PAGNOSSA JP, ROLLEMBERG NDC, SILVA JFD, DALLA NORA FM, BATIHA GES, VERRUCK S. Influence of grains postharvest conditions on mycotoxins occurrence in milk and dairy products. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.16421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
KHORSHIDI M, HESHMATI A, HADIAN Z, SMAOUI S, MOUSAVI KHANEGHAH A. The occurrence of aflatoxin M1 in doogh, kefir, and kashk in Hamadan, Iran. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.42022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Zahra HADIAN
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | |
Collapse
|
18
|
GONÇALVES BL, ULIANA RD, LEE SH, COPPA CF, OLIVEIRA CAFD, KAMIMURA ES, CORASSIN CH. Use of scanning electron microscopy and high-performance liquid chromatography to assess the ability of microorganisms to bind aflatoxin M1 in Minas Frescal cheese. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
GONÇALVES BL, ULIANA RD, COPPA CFSC, LEE SHI, KAMIMURA ES, OLIVEIRA CAF, CORASSIN CH. Aflatoxin M1: biological decontamination methods in milk and cheese. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.22920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
WANG J, GU Y, ZHANG Y, CHEN S, LI L, LIAO Z, SHAN X, HE L, CHEN J. Toxigenic potential analysis and fumigation treatment of three Fusarium spp. strains isolated from Fusarium head blight of wheat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.53822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jin WANG
- Guangxi Medical University, China; Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Yuxi GU
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Yuchong ZHANG
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Shuai CHEN
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Li LI
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Zilong LIAO
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | - Xiaoxue SHAN
- Sinograin Chengdu Storage Research Institute Co. Ltd., China
| | | | - Jinying CHEN
- Guangxi Medical University, China; Sinograin Chengdu Storage Research Institute Co. Ltd., China
| |
Collapse
|
21
|
Arrua AA, Arrúa PD, Moura-Mendes J, Cazal C, Ferreira FP, Grabowski CJ, Lopez-Nicora HD, Fernández Rios D. Presence of Aflatoxin M1 in Commercial Milk in Paraguay. J Food Prot 2021; 84:2128-2132. [PMID: 34324667 DOI: 10.4315/jfp-21-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The presence of aflatoxin M1 (AFM1) in milk is a public health concern because milk is a significant part of human diets worldwide. In economies where AFM1 monitoring is low or nonexistent, the possibility of AFM1 contamination might be increased. Our study was conducted to detect and quantify AFM1 in fluid milk and milk drinks of various brands, fat concentrations, packages, and heat treatments sold in the Metropolitan Area of Asunción, Paraguay. Eighty samples were collected from supermarkets in the Metropolitan Area of Asunción following a nonprobability sampling method. An enzyme-linked immunosorbent assay for AFM1 (25 to 500 ppt) was used to quantify the toxin, and results were analyzed with nonparametric methods. All samples were positive values for AFM1 (above the detection limit of 25 ng/kg); 85% of the samples had 30 to 50 ng/kg, and 15% had >500 ng/kg. No significant difference in AFM1 concentration was found based on fat concentration, heat treatment, or type of packaging of these milk products; however, significant differences were found between brands. HIGHLIGHTS
Collapse
Affiliation(s)
- Andrea Alejandra Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Pablo David Arrúa
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Cinthia Cazal
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Francisco Paulo Ferreira
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | | | - Danilo Fernández Rios
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| |
Collapse
|
22
|
Wang N, Jin Y, He G, Yuan L. Intraspecific and interspecific extracellular metabolites remodel biofilms formed by thermophilic spoilage bacteria. J Appl Microbiol 2021; 133:2096-2106. [PMID: 34689405 DOI: 10.1111/jam.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022]
Abstract
AIMS Thermophilic spoilage bacteria and their biofilms formed during milk powder processing posed threats to safety and quality of dairy products. This research aims to understand more about the bacterial behaviours and their social models in biofilms. METHODS AND RESULTS Interactional effects from both extracellular metabolites and co-culture on biofilms formation of the contaminating thermophilic bacteria were determined. The results showed that strong biofilm formers always had high AI-2 activities, including Geobacillus stearothermophilus gs1, Bacillus licheniformis bl1 and Thermoactinomyces vulgaris tv1. Metabolites from themself or other species altered their biofilm biomass detected by crystal violet staining. Dual-species cultures observed by confocal laser scanning microscope indicated either synergistic or inhibitory effects between B. circulans bc1 and G. stearothermophilus gs1, as well as B. licheniformis bl1 and G. stearothermophilus gs1. Fourier transform infrared spectrometry results revealed the significant diversities in polysaccharides of the biofilm matrix. CONCLUSIONS Cell communication played an important role on biofilm formation in the complex microbial community. Intraspecific and interspecific extracellular metabolites influenced collective bacterial behaviours under mixed circumstances. SIGNIFICANCE AND IMPACT OF STUDY This research provided evidences on cell communication and biofilm formation of thermophilic bacteria in dairy industry.
Collapse
Affiliation(s)
- Ni Wang
- School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yujie Jin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Pepoyan AZ, Manvelyan AM, Balayan MH, Galstyan S, Tsaturyan VV, Grigoryan B, Chikindas ML. Low-Dose Electron-Beam Irradiation for the Improvement of Biofilm Formation by Probiotic Lactobacilli. Probiotics Antimicrob Proteins 2021; 12:667-671. [PMID: 31218543 DOI: 10.1007/s12602-019-09566-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of 50-150 gray electron-beam irradiation on the biofilm-formation ability and cell surface hydrophobicity of the commercial strain, Lactobacillus acidophilus DDS®-1, from Lacto-G (a marketed synbiotic formulation) and the putative probiotic, L. rhamnosus Vahe, were evaluated. No significant changes in cell surface hydrophobicity were found after irradiation, while increases in biofilm-formation abilities were documented for both investigated microorganisms 0.22 ± 0.03 vs. 0.149 ± 0.02 (L. rhamnosus Vahe, 150 Gy) and 0.218 ± 0.021 vs. 0.17 ± 0.012 (L. acidophilus DDS®-1, 150 Gy). Given this, the use of electron-beam irradiation (50-100 Gy) for the treatment of L. rhamnosus Vahe and L. acidophilus DDS®-1 cells may be considered in product sterilization, quality improvement, and packaging practices.
Collapse
Affiliation(s)
- Astghik Z Pepoyan
- Department of Food Safety and Biotechnology, Armenian National Agrarian University, Teryan 74, 0009, Yerevan, Armenia. .,International Association for Human and Animals Health Improvement, Azatutyan 11, 0037, Yerevan, Armenia.
| | - Anahit M Manvelyan
- Department of Food Safety and Biotechnology, Armenian National Agrarian University, Teryan 74, 0009, Yerevan, Armenia
| | - Marine H Balayan
- Department of Food Safety and Biotechnology, Armenian National Agrarian University, Teryan 74, 0009, Yerevan, Armenia
| | | | | | | | - Michael L Chikindas
- Health Promoting Naturals Laboratory, Rutgers State University, New Brunswick, NJ, 08901, USA.,Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
24
|
In vitro ability of nonviable cells of lactic acid bacteria strains in combination with sorbitan monostearate to bind to aflatoxin M1 in skimmed milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Xu N, Xiao Y, Xie Q, Li Y, Ye J, Ren D. Occurrence of aflatoxin B1 in total mixed rations and aflatoxin M1 in raw and commercial dairy milk in northern China during winter season. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
27
|
Peles F, Sipos P, Kovács S, Győri Z, Pócsi I, Pusztahelyi T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins (Basel) 2021; 13:toxins13020104. [PMID: 33535580 PMCID: PMC7912779 DOI: 10.3390/toxins13020104] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive exclusion or biofungicides, and post-harvest technologies and practices based on biological agents currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol technologies can give us the greatest opportunity to reduce AF production on the spot. Together with post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce AF contamination without synthetic chemicals.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Péter Sipos
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
- Correspondence: ; Tel.: +36-20-210-9491
| |
Collapse
|
28
|
Muaz K, Riaz M, Oliveira CAFD, Akhtar S, Ali SW, Nadeem H, Park S, Balasubramanian B. Aflatoxin M1 in milk and dairy products: global occurrence and potential decontamination strategies. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khurram Muaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Riaz
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Habibullah Nadeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | | |
Collapse
|
29
|
Lai K, How Y, Pui L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J Microencapsul 2020; 38:134-148. [PMID: 33306440 DOI: 10.1080/02652048.2020.1863490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM This study aimed to evaluate the protective effect of flaxseed mucilage on the co-extrusion microencapsulation of Lactobacillus rhamnosus GG. METHODS Core flow rate, chitosan coating, and flaxseed mucilage concentration were optimised for the microencapsulation of L. rhamnosus. The microbeads were characterised and evaluated on microencapsulation efficiency and cell released after 6 h of sequential digestion. RESULTS The optimised parameters for the L. rhamnosus microencapsulation were 1.0 mL/min core flow rate, 0.4% (w/v) chitosan coating, and 0.4% (w/v) flaxseed mucilage. The L. rhamnosus microbeads with flaxseed mucilage in core and wall materials had a smooth surface with 781.3 µm diameter, the highest microencapsulation efficiency (98.8% w/w), lowest swelling (5196.7% w/w) and erosion ratio (515.5% w/w), and least cell release (<40% w/w) with 9.31 log10 CFU mL-1 after sequential digestion. CONCLUSIONS This study showed the protective capacity of flaxseed mucilage towards the L. rhamnosus GG during microencapsulation and gastrointestinal environment.
Collapse
Affiliation(s)
- Kawai Lai
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yuhsuan How
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liewphing Pui
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
VASCONCELOS RAM, KALSCHNE DL, WOCHNER KF, MOREIRA MCC, BECKER-ALGERI TA, CENTENARO AI, COLLA E, RODRIGUES PCA, DRUNKLER DA. Feasibility of L. plantarum and prebiotics on Aflatoxin B1 detoxification in cow milk. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.34120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Eliane COLLA
- Universidade Tecnológica Federal do Paraná, Brasil
| | | | | |
Collapse
|
31
|
Tajik H, Sayadi M. Effects of probiotic bacteria of Lactobacillus acidophilus and Lactobacillus casei on aflatoxin B1 detoxification within a simulated gastrointestinal tract model. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1843180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hossein Tajik
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, Urmia University, Urmia, Iran
| | - Mehran Sayadi
- Faculty of Veterinary Medicine, Department of Food Hygiene and Quality Control, Urmia University, Urmia, Iran
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
32
|
Azam M, Saeed M, Pasha I, Shahid M. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Liu A, Zheng Y, Liu L, Chen S, He L, Ao X, Yang Y, Liu S. Decontamination of Aflatoxins by Lactic Acid Bacteria. Curr Microbiol 2020; 77:3821-3830. [PMID: 32979055 DOI: 10.1007/s00284-020-02220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Aflatoxins are toxic secondary metabolic products, which exert great hazards to human and animal health. Decontaminating aflatoxins from food ingredients to a threshold level is a prime concern for avoiding risks to the consumers. Biological decontamination processes of aflatoxins have received widespread attention due to their mild and environmental-friendly nature. Many reports have been published on the decontamination of aflatoxins by microorganisms, especially lactic acid bacteria (LAB), a well-explored probiotic and generally recognized as safe. The present review aims at updating the decontamination of produced aflatoxins using LAB, with an emphasis on the decontamination mechanism and influence factors for decontamination. This comprehensive analysis provides insights into the binding mechanisms between LAB and aflatoxins, facilitating the theoretical and practical application of LAB for decontaminating hazardous substances in food and agriculture.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Yiliu Zheng
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiaoling Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
34
|
Ben Salah-Abbès J, Belgacem H, Ezdini K, Mannai M, Oueslati R, Abbès S. Immunological effects of AFM1 in experimental subchronic dosing in mice prevented by lactic acid bacteria. Immunopharmacol Immunotoxicol 2020; 42:572-581. [PMID: 32938251 DOI: 10.1080/08923973.2020.1824237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Recently, higher contamination by aflatoxin M1 (AFM1) has been detected in many countries. Unfortunately, many tons of contaminated milk and milk byproducts are removed from the food chain to avoid human contamination; as a consequence of higher economic losses. Fewest number of studies are interested to AFM1 detoxification using lactic acid bacteria. MATERIALS AND METHODS In this study, AFM1-degradation using Lactobacillus paracasei BEJ01 (LPBEJ01) was tested in vitro. The preventive effect of LPBEJ01 against AFM1 immunobiological effects in mice are treated orally during 3 weeks with 100 µg AFM1, LPBEJ01 (2 × 109 CFU/ml∼2 mg/kg p.c.) and a mixture of AFM1 and LPBEJ01. RESULTS In vitro LPBEJ01 was found able to absorb 98% of AFM1 (100 µg/ml) in liquid medium after 24 h and more than 95% of AFM1 could be eliminated after 24 h in a solid-state fermentation. Animals treated with AFM1 obtained lower body weight than the control ones. The mitogenic response of spleen mononuclear cells (SMCs) in vivo was higher in mice treated with AFM1. The SMC of mice treated with AFM1 produced lower levels of IL-2, higher levels IL-4 and no effect on IL-10 production. The peritoneal macrophages of mice that treated with AFM1 released less H2O2, while mice exposed orally with the mixture of AFM1 and LPBEJ01 produced higher levels. CONCLUSION LPBEJ01 was safe and it did not have any sign of toxicity. It can be used as an additive for AFM1-detoxification contamination in the food chain in countries suffering from this problem.
Collapse
Affiliation(s)
- Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Khawla Ezdini
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Marwa Mannai
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Ridha Oueslati
- Unit of Immunology, Environmental Microbiology and Cancerology, Faculty of Sciences Bizerte, University of Carthage, Tunis, Tunisia
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-Resources Valorisation, University of Monastir, Monastir, Tunisia.,Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia
| |
Collapse
|
35
|
Montero-Zamora J, Cortés-Muñoz M, Esquivel P, Mora-Villalobos JA, Velázquez C. Growth conditions and survival kinetics during storage of Lactobacillus rhamnosus GG for the design of a sustainable probiotic whey-based beverage containing Costa Rican guava fruit pulp. J Food Sci 2020; 85:3478-3486. [PMID: 32901935 DOI: 10.1111/1750-3841.15430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The finding of economical and practical applications for milk whey is still a challenge for dairy industries. This paper presents information about the development of a probiotic-prebiotic beverage based on Lactobacillus rhamnosus GG (LGG) and Costa Rican guava (CRG) fruit pulp with industrial potential. First, a supplemented whey media was developed for LGG growth, and the whey-supplemented media was used for fermentation in bioreactors. LGG reached a maximum growth rate of 0.32 hr-1 after 48 hr of fermentation. The whey-grown probiotics were then mixed with CRG pulp to produce the probiotic-prebiotic beverage. The survival kinetics of LGG in the formulated drink was not affected by the addition of CRG pulp (P > 0.05), and the shelf-life of the inoculated beverage surpassed 40 days with a minimum population of 106 colony forming units (CFU)/mL. Properties as pH, fructose, glucose, sucrose, and proanthocyanidins (PACs) content exhibited a significant difference after storage time (P < 0.05). Finally, three different formulas of the beverage with different whey content were compared through sensory evaluation. The prototype with 50% whey content was one of the most valuable beverage formulas according to the organoleptic parameters, which remarks about the possibility of developing a probiotic whey-based beverage containing CRG pulp. Furthermore, this is the first report about CRG beverages as a probiotic vector. PRACTICAL APPLICATION: This research focuses on the evaluation of the properties of a probiotic beverage, with a promissory industrial application using whey, as a dairy industry byproduct, combined with the pulp of the highly nutritious and subutilized Costa Rican guava (CRG) fruit.
Collapse
Affiliation(s)
- Jéssica Montero-Zamora
- National Center for Biotechnological Innovations of Costa Rica (CENIBiot), San José, 1174-1200, Costa Rica
| | - Marianela Cortés-Muñoz
- School of Food Technology, University of Costa Rica (UCR), San José, 11501-2060, Costa Rica.,National Center for Food Science and Technology (CITA), University of Costa Rica (UCR), San José, 11501-2060, Costa Rica
| | - Patricia Esquivel
- School of Food Technology, University of Costa Rica (UCR), San José, 11501-2060, Costa Rica
| | | | - Carmela Velázquez
- National Center for Food Science and Technology (CITA), University of Costa Rica (UCR), San José, 11501-2060, Costa Rica
| |
Collapse
|
36
|
Pimpitak U, Rengpipat S, Phutong S, Buakeaw A, Komolpis K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Sirirat Rengpipat
- Department of Microbiology Faculty of Science Chulalongkorn University Bangkok10330Thailand
| | - Songchan Phutong
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
- Food Risk Hub Research Unit of Chulalongkorn University Bangkok10330Thailand
| |
Collapse
|
37
|
Determination of Aflatoxin M1 in Raw Milk from Different Provinces of Ecuador. Toxins (Basel) 2020; 12:toxins12080498. [PMID: 32756414 PMCID: PMC7472276 DOI: 10.3390/toxins12080498] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Aflatoxin M1 (AFM1) is a mycotoxin from Aspergillus flavus and A. parasiticus, classified as carcinogenic and hepatotoxic. The objective of the present investigation was to determine its presence in raw milk from north-central Ecuador, constituted by the provinces of Pichincha, Manabí, and Santo Domingo de los Tsáchilas. These areas represent approximately 30% of Ecuadorian milk production. By the end of the investigation, a total of 209 raw milk samples were collected, obtained both during the dry (June and August) and rainy seasons (April and November) of 2019. AFM1 concentrations were measured with lateral flow immunochromatographic assays, and 100% of the samples were positive for this mycotoxin, presenting a mean value of 0.0774 μg/kg with a range of 0.023 to 0.751 μg/kg. These AFM1 levels exceeded the European Union regulatory limit of 0.05 μg/kg in 59.3% (124/209) of samples, while only 1.9% (4/209) exceeded the Ecuadorian legal limit of 0.5 μg/kg. By using non-parametric tests, significant differences were determined (p ≤ 0.05) between the provinces for months of study, climatic season (being higher in the dry season), and climatic region (greater in the coast region). On the other hand, there were no significant differences (p ≥ 0.05) between the types of producers or between production systems. Therefore, AFM1 contamination in raw milk does not present a serious public health problem in Ecuador, but a monitoring and surveillance program for this mycotoxin in milk should be developed to prevent consumer health problems.
Collapse
|
38
|
Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Xiong J, Peng L, Zhou H, Lin B, Yan P, Wu W, Liu Y, Wu L, Qiu Y. Prevalence of aflatoxin M1 in raw milk and three types of liquid milk products in central-south China. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
SIANG SC, WAI LK, LIN NK, PHING PL. Effect of added prebiotic (Isomalto-oligosaccharide) and Coating of Beads on the Survival of Microencapsulated Lactobacillus rhamnosus GG. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.27518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Assaf JC, Nahle S, Chokr A, Louka N, Atoui A, El Khoury A. Assorted Methods for Decontamination of Aflatoxin M1 in Milk Using Microbial Adsorbents. Toxins (Basel) 2019; 11:E304. [PMID: 31146398 PMCID: PMC6628408 DOI: 10.3390/toxins11060304] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Aflatoxins (AF) are carcinogenic metabolites produced by different species of Aspergillus which readily colonize crops. AFM1 is secreted in the milk of lactating mammals through the ingestion of feedstuffs contaminated by aflatoxin B1 (AFB1). Therefore, its presence in milk, even in small amounts, presents a real concern for dairy industries and consumers of dairy products. Different strategies can lead to the reduction of AFM1 contamination levels in milk. They include adopting good agricultural practices, decreasing the AFB1 contamination of animal feeds, or using diverse types of adsorbent materials. One of the most effective types of adsorbents used for AFM1 decontamination are those of microbial origin. This review discusses current issues about AFM1 decontamination methods. These methods are based on the use of different bio-adsorbent agents such as bacteria and yeasts to complex AFM1 in milk. Moreover, this review answers some of the raised concerns about the binding stability of the formed AFM1-microbial complex. Thus, the efficiency of the decontamination methods was addressed, and plausible experimental variants were discussed.
Collapse
Affiliation(s)
- Jean Claude Assaf
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Sahar Nahle
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Ali Chokr
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut P.O. Box 6573/14, Lebanon.
| | - Nicolas Louka
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
| | - Ali Atoui
- Research Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut P.O Box 5, Lebanon.
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des sciences et technologies, Mar Roukos, Matn 1104-2020, Lebanon .
| |
Collapse
|