1
|
Kaavya R, Rajasekaran B, Shah K, Nickhil C, Palanisamy S, Palamae S, Chandra Khanashyam A, Pandiselvam R, Benjakul S, Thorakattu P, Ramesh B, Aurum FS, Babu KS, Rustagi S, Ramniwas S. Radical species generating technologies for decontamination of Listeria species in food: a recent review report. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38380625 DOI: 10.1080/10408398.2024.2316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.
Collapse
Affiliation(s)
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Suguna Palanisamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Priyamavada Thorakattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Fawzan Sigma Aurum
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Karami-Eshkaftaki Z, Saei-Dehkordi S, Albadi J, Moradi M, Saei-Dehkordi SS. Coated composite paper with nano-chitosan/cinnamon essential oil-nanoemulsion containing grafted CNC@ZnO nanohybrid; synthesis, characterization and inhibitory activity on Escherichia coli biofilm developed on grey zucchini. Int J Biol Macromol 2024; 258:128981. [PMID: 38158064 DOI: 10.1016/j.ijbiomac.2023.128981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
This investigation aims to highlight the applicability of a potent eco-friendly developed composite film to combat the Escherichia coli biofilm formed in a model food system. ZnO nanoparticles (NPs) synthesized using green methods were anchored on the surface of cellulose nanocrystals (CNCs). Subsequently, nano-chitosan (NCh) solutions were used to disperse the synthesized nanoparticles and cinnamon essential oil (CEO). These solutions, containing various concentrations of CNC@ZnO NPs and CEO, were sequentially coated onto cellulosic papers to inhibit Escherichia coli biofilms on grey zucchini slices. Six films were developed, and Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, biodegradation, and mechanical properties were assessed. The film containing 5 % nano-emulsified CEO + 3 % dispersed CNC@ZnO nano-hybrid in an NCh solution was selected for further testing since it exhibited the largest zone of inhibition (34.32 mm) against E. coli and the highest anti-biofilm activity on biofilms developed on glass surfaces. The efficacy of the film against biofilms on zucchini surfaces was temperature-dependent. During 60 h, the selected film resulted in log reductions of approximately 4.5 logs, 2.85 logs, and 1.57 logs at 10 °C, 25 °C, and 37 °C, respectively. Applying the selected film onto zucchini surfaces containing biofilm structures leads to the disappearance of the distinctive three-dimensional biofilm framework. This innovative anti-biofilm film offers considerable potential in combatting biofilm issues on food surfaces. The film also preserved the sensory quality of zucchini evaluated for up to 60 days.
Collapse
Affiliation(s)
- Zahra Karami-Eshkaftaki
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Siavash Saei-Dehkordi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran.
| | - Jalal Albadi
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord 34141, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - S Saeid Saei-Dehkordi
- PhD graduate, Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
3
|
WU Z, YAN J, ZHOU Z, XU Q, LI Q, LI G, LI X, FANG X, ZHONG Q. Preparation of pickering emulsion of cinnamon essential oil using soybean protein isolate-chitosan particles as stabilizers. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zijun WU
- Zhongkai University of Agriculture and Engineering, China
| | - Jie YAN
- Zhongkai University of Agriculture and Engineering, China
| | - Zhijian ZHOU
- Zhongkai University of Agriculture and Engineering, China
| | - Qiulin XU
- Zhongkai University of Agriculture and Engineering, China
| | - Qiaoguang LI
- Zhongkai University of Agriculture and Engineering, China
| | - Guangqing LI
- Zhongkai University of Agriculture and Engineering, China
| | - Xigui LI
- Guangzhou Zhongke Research Institute of Trace Elements, China
| | - Xitong FANG
- Zhongkai University of Agriculture and Engineering, China
| | - QiuLing ZHONG
- Zhongkai University of Agriculture and Engineering, China
| |
Collapse
|
4
|
SCHUH J, BATISTELI P, GARGETTI A, ZAPPAROLI A, BALSAN TI, GILIOLI A, ZANETTI VC, FORALOSSO FB, VARGAS JUNIOR Á, FRONZA N, VERRUCK S, SILVEIRA SMD. Basil, marjoram, nutmeg and oregano essential oils as natural preservatives of Quark-type cheese. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.31322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|