1
|
Lear CA, Dhillon SK, Nakao M, Lear BA, Georgieva A, Ugwumadu A, Stone PR, Bennet L, Gunn AJ. The peripheral chemoreflex and fetal defenses against intrapartum hypoxic-ischemic brain injury at term gestation. Semin Fetal Neonatal Med 2024; 29:101543. [PMID: 39455374 DOI: 10.1016/j.siny.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Fetal hypoxemia is ubiquitous during labor and, when severe, is associated with perinatal death and long-term neurodevelopmental disability. Adverse outcomes are highly associated with barriers to care, such that developing countries have a disproportionate burden of perinatal injury. The prevalence of hypoxemia and its link to injury can be obscure, simply because the healthy fetus has robust coordinated defense mechanisms, spearheaded by the peripheral chemoreflex, such that hypoxemia only becomes apparent in the minority of cases associated with stillbirth, severe metabolic acidemia or adverse neurodevelopmental outcomes. This represents only the extreme end of the spectrum, when defense mechanisms have failed due to severe/prolonged hypoxemia, or the fetal defenses are compromised by additional risk factors. Understanding the fetal defenses to hypoxemia and when the fetus begins to decompensate is crucial to understanding perinatal health and disease, by linking antenatal health, intrapartum events, the neonatal trajectory and ultimately life-long neurodevelopmental health.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Auckland City Hospital, Auckland, New Zealand.
| | - Simerdeep K Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Masahiro Nakao
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Mie, Japan
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Antoniya Georgieva
- Nuffield Department of Women's and Reproductive Health, The John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, London, United Kingdom
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand; Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
2
|
Gunn AJ, Davidson JO. Stay cool and keep moving forwards. Pediatr Res 2024:10.1038/s41390-024-03546-0. [PMID: 39242940 DOI: 10.1038/s41390-024-03546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Castán Larraz B, Esteban LM, Castán Mateo S, Chóliz Ezquerro M, Calvo Torres J, Esteban-Escaño J, Rodríguez Solanilla B, Cisneros Gimeno A, Savirón-Cornudella R. The utility of fetal heart rate deceleration's descending slope in searching for a non-National Institute of Child Health and Human Development parameter for the detection of fetal acidosis. Int J Gynaecol Obstet 2024; 166:859-870. [PMID: 38441244 DOI: 10.1002/ijgo.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE To identify new parameters predicting fetal acidemia. METHODS A retrospective case-control study in a cohort of deliveries from a tertiary referral hospital-based cohort deliveries in Zaragoza, Spain between 2018 and 2021 was performed. To predict fetal acidemia, the NICHD categorizations and non-NICHD parameters were analyzed in the electronic fetal monitoring (EFM). Those included total reperfusion time, total deceleration area and the slope of the descending limb of the fetal heart rate of the last deceleration curve. The accuracy of the parameters was evaluated using the specificity for (80%, 85%, 90%, 95%) sensitivity and the area under the receiver operating characteristic curve (AUC). RESULTS A total of 10 362 deliveries were reviewed, with 224 cases and 278 controls included in the study. The NICHD categorizations showed reasonable discriminatory ability (AUC = 0.727). The non-NICHD parameters measured during the 30-min fetal monitoring, total deceleration area (AUC = 0.807, 95% CI: 0.770, 0.845) and total reperfusion time (AUC = 0.750, 95% CI: 0.707, 0.792), exhibited higher discriminatory ability. The slope of the descending limb of the fetal heart rate of the last deceleration curve had the best AUC value (0.853, 95% CI: 0.816, 0.889). The combination of total deceleration area or total reperfusion time with the slope demonstrated high discriminatory ability (AUC = 0.908, 95% CI: 0.882, 0.933; specificities of 71.6% and 72.7% for a sensitivity of 90%). CONCLUSIONS The slope of the descending limb of the fetal heart rate of the last deceleration curve is the strongest predictor of fetal acidosis, but its combination with the total reperfusion time shows better clinical utility.
Collapse
Affiliation(s)
- Berta Castán Larraz
- Department of Obstetrics and Gynecology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Sergio Castán Mateo
- Department of Obstetrics and Gynecology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Javier Calvo Torres
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Esteban-Escaño
- Department of Electronic Engineering and Communications, Escuela Universitaria Politécnica de La Almunia, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Ana Cisneros Gimeno
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ricardo Savirón-Cornudella
- Department of Obstetrics and Gynecology, Hospital Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|
4
|
Gunn AJ, Soul JS, Vesoulis ZA, Ferriero DM. The importance of not increasing confusion around neonatal encephalopathy and hypoxic-ischemic encephalopathy. Pediatr Res 2024; 95:871-872. [PMID: 38158415 DOI: 10.1038/s41390-023-03001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand.
| | - Janet S Soul
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Donna M Ferriero
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
5
|
Lear CA, Ugwumadu A, Bennet L, Gunn AJ. An Update of Our Understanding of Fetal Heart Rate Patterns in Health and Disease. Semin Pediatr Neurol 2023; 47:101072. [PMID: 37919038 DOI: 10.1016/j.spen.2023.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
UNDERSTANDING FETAL HEART RATE PATTERNS THAT MAY PREDICT ANTENATAL AND INTRAPARTUM NEURAL INJURY: Christopher A. Lear, Jenny A. Westgate, Austin Ugwumadu, Jan G. Nijhuis, Peter R. Stone, Antoniya Georgieva, Tomoaki Ikeda, Guido Wassink , Laura Bennet , Alistair J. Gunn Seminars in Pediatric Neurology Volume 28, December 2018, Pages 3-16 Electronic fetal heart rate (FHR) monitoring is widely used to assess fetal well-being throughout pregnancy and labor. Both antenatal and intrapartum FHR monitoring are associated with a high negative predictive value and a very poor positive predictive value. This in part reflects the physiological resilience of the healthy fetus and the remarkable effectiveness of fetal adaptations to even severe challenges. In this way, the majority of "abnormal" FHR patterns in fact reflect a fetus' appropriate adaptive responses to adverse in utero conditions. Understanding the physiology of these adaptations, how they are reflected in the FHR trace and in what conditions they can fail is therefore critical to appreciating both the potential uses and limitations of electronic FHR monitoring.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, St George's University of London, London, UK
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Tolladay J, Lear CA, Bennet L, Gunn AJ, Georgieva A. Prediction of Fetal Blood Pressure during Labour with Deep Learning Techniques. Bioengineering (Basel) 2023; 10:775. [PMID: 37508802 PMCID: PMC10376045 DOI: 10.3390/bioengineering10070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Our objective is to develop a model for the prediction of minimum fetal blood pressure (FBP) during fetal heart rate (FHR) decelerations. Experimental data from umbilical occlusions in near-term fetal sheep (2698 occlusions from 57 near-term lambs) were used to train a convolutional neural network. This model was then used to estimate FBP for decelerations extracted from the final 90 min of 53,445 human FHR signals collected using cardiotocography. Minimum sheep FBP was predicted with a mean absolute error of 6.7 mmHg (25th, 50th, 75th percentiles of 2.3, 5.2, 9.7 mmHg), mean absolute percentage errors of 17.3% (5.5%, 12.5%, 23.9%) and a coefficient of determination R2=0.36. While the model was unable to clearly predict severe compromise at birth in humans, there is positive evidence that such a model could predict human FBP with further development. The neural network is capable of predicting FBP for many of the sheep decelerations accurately but performed far from satisfactory at identifying FHR segments that correspond to the highest or lowest minimum FBP. These results indicate that with further work and a larger, more variable training dataset, the model could achieve higher accuracy.
Collapse
Affiliation(s)
- John Tolladay
- Oxford Labour Monitoring Group, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, OX1 2JD, UK
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland 1010, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland 1010, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland 1010, New Zealand
| | - Antoniya Georgieva
- Oxford Labour Monitoring Group, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, OX1 2JD, UK
- Big Data Institute, Old Road Campus, University of Oxford, Oxford, OX3 7LF, UK
| |
Collapse
|