1
|
Barnie PA, Zhang P, Lv H, Wang D, Su X, Su Z, Xu H. Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders. Exp Ther Med 2016; 13:378-388. [PMID: 28352304 DOI: 10.3892/etm.2016.4018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) were originally described as a heterogeneous population of immature cells derived from myeloid progenitors with immune-suppressive functions in tumor-bearing hosts. In recent years, increasing number of studies have described various populations of myeloid cells with MDSC-like properties in murine models of cancer and autoimmune diseases. These studies have observed that the populations of MDSCs are increased during inflammation and autoimmune conditions. In addition, MDSCs can effectively suppress T cell responses and modulate the activity of natural killer cells and other myeloid cells. MDSCs have also been implicated in the induction of regulatory T cell production. Furthermore, these cells have the potential to suppress the autoimmune response, thereby limiting tissue injury. Myeloid regulatory cells (Mregs) are recently attracting increasing attention, since they function in proinflammatory and immune suppression in autoimmune diseases, as well as in various types of cancer. Currently, research focus is directed from MDSCs to Mregs in cancer and autoimmune diseases. The present study reviewed the suppressive roles of MDSCs in various autoimmune murine models, the immune modulation of MDSCs to T helper 17 lymphocytes, as well as the proinflammatory and immunosuppressive roles of Mregs in various types of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Prince Amoah Barnie
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Biomedical and Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Pan Zhang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hongxiang Lv
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Dan Wang
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaolian Su
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhaoliang Su
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Huaxi Xu
- Department of Immunology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
2
|
Mackern-Oberti JP, Llanos C, Carreño LJ, Riquelme SA, Jacobelli SH, Anegon I, Kalergis AM. Carbon monoxide exposure improves immune function in lupus-prone mice. Immunology 2013; 140:123-32. [PMID: 23691924 PMCID: PMC3809712 DOI: 10.1111/imm.12124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 01/09/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple alterations affecting the normal function of immune cells, such as lymphocytes, dendritic cells (DCs) and monocytes. Although the understanding of autoimmunity has significantly increased, the breakthrough in effective therapies has been modest, making necessary the development of new therapeutic strategies. Here we propose that a new potential target for therapy is haem oxygenase-1 (HO-1), an enzyme that catalyses the degradation of the haem group into biliverdin, carbon monoxide (CO) and Fe(2+) . These products exhibit immunosuppressive and anti-inflammatory effects, which can contribute to improving tolerance during organ transplantation. Because HO-1 is highly expressed by immune cells involved in SLE pathogenesis, such as monocytes and DCs, we evaluated whether induction of HO-1 expression or the administration of CO could ameliorate disease in the FcγRIIb knockout (KO) mouse model for SLE. We found that CO administration decreased the expansion of CD11b(+) cells, prevented the decline of regulatory T cells and reduced anti-histone antibodies observed in untreated FcγRIIb KO mice. Furthermore, CO-treated animals and HO-1 induction showed less kidney damage compared with untreated mice. These data suggest that HO-1 modulation and CO administration can ameliorate autoimmunity and prevent the lupus symptoms shown by FcγRIIb KO mice, highlighting HO-1 as a potential new target for autoimmune therapy.
Collapse
MESH Headings
- Animals
- Autoimmunity/drug effects
- CD11b Antigen/metabolism
- Carbon Monoxide/administration & dosage
- Disease Models, Animal
- Enzyme Induction/drug effects
- Female
- Heme Oxygenase-1/biosynthesis
- Kidney/drug effects
- Kidney/enzymology
- Kidney/pathology
- Lupus Erythematosus, Systemic/enzymology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/therapy
- Male
- Membrane Proteins/biosynthesis
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, IgG/deficiency
- Receptors, IgG/genetics
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
3
|
Herrada AA, Llanos C, Mackern-Oberti JP, Carreño LJ, Henriquez C, Gómez RS, Gutierrez MA, Anegon I, Jacobelli SH, Kalergis AM. Haem oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus. Immunology 2012; 136:414-24. [PMID: 22587389 DOI: 10.1111/j.1365-2567.2012.03598.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple functional alterations affecting immune cells, such as B cells, T cells, dendritic cells (DCs) and monocytes. During SLE, the immunogenicity of monocytes and DCs is significantly up-regulated, promoting the activation of self-reactive T cells. Accordingly, it is important to understand the contribution of these cells to the pathogenesis of SLE and the mechanisms responsible for their altered functionality during disease. One of the key enzymes that control monocyte and DC function is haem oxygenase-1 (HO-1), which catalyses the degradation of the haem group into biliverdin, carbon monoxide and free iron. These products possess immunosuppressive and anti-inflammatory capacities. The main goal of this work was to determine HO-1 expression in monocytes and DCs from patients with SLE and healthy controls. Hence, peripheral blood mononuclear cells were obtained from 43 patients with SLE and 30 healthy controls. CD14(+) monocytes and CD4(+) T cells were sorted by FACS and HO-1 expression was measured by RT-PCR. In addition, HO-1 protein expression was determined by FACS. HO-1 levels in monocytes were significantly reduced in patients with SLE compared with healthy controls. These results were confirmed by flow cytometry. No differences were observed in other cell types, such as DCs or CD4(+) T cells, although decreased MHC-II levels were observed in DCs from patients with SLE. In conclusion, we found a significant decrease in HO-1 expression, specifically in monocytes from patients with SLE, suggesting that an imbalance of monocyte function could be partly the result of a decrease in HO-1 expression.
Collapse
Affiliation(s)
- Andrés A Herrada
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Reduced expression of TCR zeta is involved in the abnormal production of cytokines by peripheral T cells of patients with systemic lupus erythematosus. J Biomed Biotechnol 2010; 2010. [PMID: 20936133 PMCID: PMC2947188 DOI: 10.1155/2010/509021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 07/13/2010] [Accepted: 08/20/2010] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence suggests that dysfunction of T cells underlies the pathogenesis of systemic lupus erythematosus (SLE). We revealed that SLE T cells produced an abnormally excessive amount of IFN-γin vitro upon stimulation through TCR, and the expression level of TCR zeta was significantly reduced. The production of IFN-γ by SLE T cells was negatively correlated with the expression level of TCR zeta. This correlation was abolished when the cells were stimulated with TPA and ionomycin, which bypass TCR and introduce signals directly into the cells, but the production of IFN-γ by SLE T cells remained abnormally elevated. Taken together, these data suggest that regulatory mechanisms not only for the expression of TCR zeta but also for the production of IFN-γ were impaired in SLE T cells. These impairments may be responsible for the aberrant responses of SLE T cells and partly involved in the development of SLE.
Collapse
|
5
|
Carreño LJ, Pacheco R, Gutierrez MA, Jacobelli S, Kalergis AM. Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fc gamma receptors and costimulatory molecules on dendritic cells. Immunology 2010; 128:334-41. [PMID: 20067533 DOI: 10.1111/j.1365-2567.2009.03138.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the interface between immunity and maintenance of peripheral tolerance. The capture of immunoglobulin G (IgG)-containing immune complexes (ICs) by low-affinity Fc gamma receptors (Fc gammaRs) expressed on DCs may influence the immunogenicity/tolerogenicity of these cells, depending on the activating/inhibitory potential of Fc gammaRs. Because of the key role that low-affinity Fc gammaRs play in determining the magnitude of the response in IC-driven inflammation, these receptors are likely to play a role in autoimmune diseases, such as systemic lupus erythematosus (SLE). To evaluate if an altered expression of costimulatory molecules and/or Fc gammaRs could account for disease severity, we evaluated the expression of these molecules on immature and mature DCs derived from peripheral blood monocytes of SLE patients and healthy donors. Our results show an increased expression of the costimulatory molecules CD40 and CD86. Furthermore, the ratio of CD86/CD80 is higher in SLE patients compared with healthy donors. Conversely, while the expression of activating Fc gammaRs was higher on DCs from SLE patients, expression of inhibitory Fc gammaRs was lower, compared with DCs obtained from healthy donors. As a result, the activating to inhibitory Fc gammaR ratio was significantly higher in DCs from SLE patients. The altered ratio of activating/inhibitory Fc gammaRs on mature DCs showed a significant correlation with the activity of SLE, as determined by the SLE Disease Activity Index (SLEDAI) score. We postulate that the increased ratio of activating/inhibitory Fc gammaRs expressed on DCs from SLE patients can contribute to the failure of peripheral tolerance in the IC-mediated phase of autoimmune pathogenesis.
Collapse
Affiliation(s)
- Leandro J Carreño
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
6
|
Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4+CD25high T Regulatory Cell Function in Patients with Active Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 178:2579-88. [PMID: 17277168 DOI: 10.4049/jimmunol.178.4.2579] [Citation(s) in RCA: 437] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4(+)CD25(+) T regulatory cells (Tregs) play an essential role in maintaining immunologic homeostasis and preventing autoimmunity. Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance to nuclear components. We hypothesized that altered function of CD4(+)CD25(high) Tregs might play a role in the breakdown of immunologic self-tolerance in patients with SLE. In this study, we report a significant decrease in the suppressive function of CD4(+)CD25(high) Tregs from peripheral blood of patients with active SLE as compared with normal donors and patients with inactive SLE. Notably, CD4(+)CD25(high) Tregs isolated from patients with active SLE expressed reduced levels of FoxP3 mRNA and protein and poorly suppressed the proliferation and cytokine secretion of CD4(+) effector T cells in vitro. In contrast, the expression of FoxP3 mRNA and protein and in vitro suppression of the proliferation of CD4(+) effector T cells by Tregs isolated from inactive SLE patients, was comparable to that of normal individuals. In vitro activation of CD4(+)CD25(high) Tregs from patients with active SLE increased FoxP3 mRNA and protein expression and restored their suppressive function. These data are the first to demonstrate a reversible defect in CD4(+)CD25(high) Treg function in patients with active SLE, and suggest that strategies to enhance the function of these cells might benefit patients with this autoimmune disease.
Collapse
Affiliation(s)
- Xavier Valencia
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases/National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Tsuzaka K, Setoyama Y, Yoshimoto K, Shiraishi K, Suzuki K, Abe T, Takeuchi T. A splice variant of the TCR zeta mRNA lacking exon 7 leads to the down-regulation of TCR zeta, the TCR/CD3 complex, and IL-2 production in systemic lupus erythematosus T cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:3518-25. [PMID: 15749888 DOI: 10.4049/jimmunol.174.6.3518] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reduction or absence of TCR zeta-chain (zeta) expression in patients with systemic lupus erythematosus (SLE) is thought to be a factor in the pathogenesis of SLE. We previously reported a splice variant of zeta mRNA that lacks the 36-bp exon 7 (zeta mRNA/exon 7(-)) and is accompanied by the down-regulation of zeta protein in T cells from SLE patients. In this study, we show that EX7- mutants (MA5.8 cells deficient in zeta protein that have been transfected with zeta mRNA/exon 7(-)) exhibit a reduction in the expression of TCR/CD3 complex and zeta protein on their cell surface as well as a reduction in the production of IL-2 after stimulation with anti-CD3 Ab, compared with that in wild-type (WT) mutants (MA5.8 cells transfected with the WT zeta mRNA). Furthermore, real-time PCR analyses demonstrated that zeta mRNA/exon 7(-) in EX7- mutants was easily degraded compared with zeta mRNA by the WT mutants. Pulse-chase experiment showed zeta protein produced by this EX7- mutants was more rapidly decreased compared with the WT mutants. Thus, the lower stability of zeta mRNA/exon 7(-) might also be responsible for the reduced expression of the TCR/CD3 complex, including zeta protein, in SLE T cells.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Cell Line
- Down-Regulation
- Exons
- Humans
- Hybridomas
- Interleukin-2/biosynthesis
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Kensei Tsuzaka
- Second Department of Internal Medicine, Saitama Medical Center, Saitama Medical School, Kawagoe, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pang M, Setoyama Y, Tsuzaka K, Yoshimoto K, Amano K, Abe T, Takeuchi T. Defective expression and tyrosine phosphorylation of the T cell receptor zeta chain in peripheral blood T cells from systemic lupus erythematosus patients. Clin Exp Immunol 2002; 129:160-8. [PMID: 12100036 PMCID: PMC1906428 DOI: 10.1046/j.1365-2249.2002.01833.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have reported that tyrosine phosphorylation and expression of the T cell receptor zeta chain (TCR zeta) was decreased in two systemic lupus erythematosus (SLE) patients with an abnormal TCR zeta lacking exon-7. To examine further the TCR zeta defect and any possible relationship with specific clinical features, we studied the expression of TCR zeta in peripheral blood T cells from 44 patients with SLE, 53 with other rheumatic diseases (30 rheumatoid arthritis (RA), 11 systemic sclerosis (SSc) and 12 primary Sjögren's syndrome(SjS)) and 39 healthy individuals. Flow cytometric analysis demonstrated a significant decrease in the expression of TCR zeta in SLE (P < 0.001), but not in the other rheumatic diseases. Immunoprecipitation experiments confirmed that the expression of TCR zeta in SLE T cells was decreased dramatically (normal: 111.4 +/- 22.6%, SLE: 51.6 +/- 37.4%, P < 0.0001). The decrease in TCR zeta did not correlate with disease activity, or with the dose of prednisolone (PSL). There were, however, three SLE patients in whom the level of TCR zeta expression normalized after treatment, suggesting that mechanisms responsible for the TCR zeta defect appear to be heterogeneous. These results confirm the defective expression and altered tyrosine phosphorylation of TCR zeta in a large proportion of SLE patients, suggesting that it may play an important role in T cell dysfunction in SLE.
Collapse
MESH Headings
- Adult
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/immunology
- Autoimmune Diseases/blood
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/immunology
- Autoimmunity
- Female
- Gene Expression Regulation
- Humans
- Immunosuppressive Agents/therapeutic use
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Phosphorylation
- Prednisolone/therapeutic use
- Protein Processing, Post-Translational
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Sjogren's Syndrome/blood
- Sjogren's Syndrome/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- M Pang
- Second Department of Internal Medicine, Saitama Medical Center, Saitama Medical School, Kawagoe, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Grolleau A, Kaplan MJ, Hanash SM, Beretta L, Richardson B. Impaired translational response and increased protein kinase PKR expression in T cells from lupus patients. J Clin Invest 2000; 106:1561-8. [PMID: 11120763 PMCID: PMC381471 DOI: 10.1172/jci9352] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activation of peripheral blood T cells results in a rapid and substantial rise in translation rates and proliferation, but proliferation in response to mitogen stimulation is impaired in systemic lupus erythematosus (SLE). We have investigated translation rates and initiation factor activities in T cells from SLE patients in response to activating signals. Activation by PMA plus ionomycin strongly increased protein synthesis in control T cells but not in T cells from SLE patients. The rate of protein synthesis is known to be strongly dependent on the activity of two eukaryotic translation initiation factors, eIF4E and eIF2alpha. We show that following stimulation, eIF4E expression and phosphorylation increased equivalently in control and SLE T cells. Expression of eIF4E interacting proteins - eIF4G, an inducer, and 4E-BP1 and 4E-BP2, two specific repressors of eIF4E function - and the phosphorylation level of 4E-BP1, were all identical in control and SLE T cells. In contrast, the protein kinase PKR, which is responsible for the phosphorylation and consequent inhibition of eIF2alpha activity, was specifically overexpressed in activated SLE T cells, correlating with an increase in eIF2alpha phosphorylation. Therefore, high expression of PKR and subsequent eIF2alpha phosphorylation is likely responsible, at least in part, for impaired translational and proliferative responses to mitogens in T cells from SLE patients.
Collapse
Affiliation(s)
- A Grolleau
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 365, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
10
|
Laxminarayana D, Khan IU, Mishra N, Olorenshaw I, Taskén K, Kammer GM. Diminished Levels of Protein Kinase A RIα and RIβ Transcripts and Proteins in Systemic Lupus Erythematosus T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Deficient type I protein kinase A phosphotransferase activity occurs in the T cells of 80% of subjects with systemic lupus erythematosus (SLE). To investigate the mechanism of this deficient isozyme activity, we hypothesized that reduced amounts of type I regulatory (RI) isoform transcripts, RIα and RIβ, may be associated with a diminution of RIα and/or RIβ protein. Sixteen SLE subjects with a mean (±1 SD) SLE disease activity index of 12.4 ± 7.2 were studied. Controls included 16 normal subjects, six subjects with primary Sjögren’s syndrome (SS), and three subjects with SS/SLE overlap. RT-PCR revealed that normal, SS, SS/SLE, and SLE T cells expressed mRNAs for all seven R and catalytic (C) subunit isoforms. Quantification of mRNAs by competitive PCR revealed that the ratio of RIα mRNA to RIβ mRNA in normal T cells was 3.4:1. In SLE T cells there were 20 and 49% decreases in RIα and RIβ mRNAs (RIβ; p = 0.008), respectively, resulting in an RIα:RIβ mRNA of 5.3:1. SS/SLE T cells showed a 72.5% decrease in RIβ mRNA compared with normal controls (p = 0.01). Immunoblotting of normal T cell RIα and RIβ proteins revealed a ratio of RIα:RIβ of 3.2:1. In SLE T cells, there was a 30% decrease in RIα protein (p = 0.002) and a 65% decrease in RIβ protein (p < 0.001), shifting the ratio of RIα:RIβ protein to 6.5:1. T cells from 25% of SLE subjects lacked any detectable RIβ protein. Analysis of several lupus T cell lines demonstrated a persistent deficiency of both proteins, excluding a potential effect of disease activity. In conclusion, reduced expression of RIα and RIβ transcripts is associated with a decrement in RIα and RIβ proteins and may contribute to deficient type I protein kinase A isozyme activity in SLE T cells.
Collapse
Affiliation(s)
- Dama Laxminarayana
- *Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| | - Islam U. Khan
- *Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| | - Nilamadhab Mishra
- *Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| | - Irene Olorenshaw
- *Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| | - Kjetil Taskén
- †Institute of Medical Biochemistry, University of Oslo, Oslo, Norway
| | - Gary M. Kammer
- *Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and
| |
Collapse
|