1
|
Morisaki N, Ohuchi A, Moriwaki S. The role of neprilysin in regulating the hair cycle. PLoS One 2013; 8:e55947. [PMID: 23418484 PMCID: PMC3572137 DOI: 10.1371/journal.pone.0055947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/03/2013] [Indexed: 11/18/2022] Open
Abstract
In most mammals, each hair follicle undergoes a cyclic process of growing, regressing and resting phases (anagen, catagen, telogen, respectively) called the hair cycle. Various biological factors have been reported to regulate or to synchronize with the hair cycle. Some factors involved in the extracellular matrix, which is a major component of skin tissue, are also thought to regulate the hair cycle. We have focused on an enzyme that degrades elastin, which is associated with skin elasticity. Since our previous study identified skin fibroblast elastase as neprilysin (NEP), we examined the fluctuation of NEP enzyme activity and its expression during the synchronized hair cycle of rats. NEP activity in the skin was elevated at early anagen, and decreased during catagen to telogen. The expression of NEP mRNA and protein levels was modulated similarly. Immunostaining showed changes in NEP localization throughout the hair cycle, from the follicular epithelium during early anagen to the dermal papilla during catagen. To determine whether NEP plays an important role in regulating the hair cycle, we used a specific inhibitor of NEP (NPLT). NPLT was applied topically daily to the dorsal skin of C3H mice, which had been depilated in advance. Mice treated with NPLT had significantly suppressed hair growth. These data suggest that NEP plays an important role in regulating the hair cycle by its increased expression and activity in the follicular epithelium during early anagen.
Collapse
Affiliation(s)
- Naoko Morisaki
- Biological Science Laboratories, Kao Corporation, Haga-gun, Tochigi, Japan.
| | | | | |
Collapse
|
2
|
Larouche D, Cuffley K, Paquet C, Germain L. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting. Tissue Eng Part A 2010; 17:819-30. [PMID: 20973750 DOI: 10.1089/ten.tea.2010.0403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.
Collapse
|
3
|
Chermnykh ES, Vorotelyak EA, Gnedeva KY, Moldaver MV, Yegorov YE, Vasiliev AV, Terskikh VV. Dermal papilla cells induce keratinocyte tubulogenesis in culture. Histochem Cell Biol 2010; 133:567-76. [PMID: 20336308 DOI: 10.1007/s00418-010-0691-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2010] [Indexed: 12/16/2022]
Abstract
The ability of dermal papilla (DP) cells to induce hair growth was reported in many studies. However, early stages of hair follicle development and signals that govern this process are poorly understood. Therefore, an in vitro model may be a convenient system to study epithelial-mesenchymal interactions and early stages of epidermal morphogenesis, especially in humans. To investigate the role of DP cells in epidermal morphogenesis we modified the method of isolation of DP cells from hair follicle of human scalp and developed the three-dimensional model of epidermal morphogenesis. Isolated DP cells were able to differentiate in adipogenic and osteogenic directions and retained activity of alkaline phosphatase (AP) for seven passages in culture. DP cells were able to induce tubule-like structures in three-dimensional model in vitro and to reorganize collagen matrix. Prolonged cultivation of DP cells has been a big problem because of the loss of hair follicle-inducing ability and growth activity after several passages. To solve this problem we immortalized DP cells by the transfection of the human telomerase reverse transcriptase cDNA (hTERT). Immortalized DP-hTERT cells retained AP activity and demonstrated low ability to osteogenic differentiation. The conditioned medium collected from actively proliferated cells as well as DP-hTERT cells themselves were capable to induce tubulogenesis after prolonged keratinocyte cultivation.
Collapse
Affiliation(s)
- Elina S Chermnykh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
4
|
Virador VM, Flores-Obando RE, Berry A, Patel R, Zakhari J, Lo YC, Strain K, Anders J, Cataisson C, Hansen LA, Yuspa SH. The human promyelocytic leukemia protein is a tumor suppressor for murine skin carcinogenesis. Mol Carcinog 2009; 48:599-609. [PMID: 19058256 DOI: 10.1002/mc.20498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Expression of the PMLRARalpha fusion dominant-negative oncogene in the epidermis of transgenic mice resulted in spontaneous skin tumors attributed to changes in both the PML and RAR pathways [Hansen et al., Cancer Res 2003; 63:5257-5265]. To determine the contribution of PML to skin tumor susceptibility, transgenic mice were generated on an FVB/N background, that overexpressed the human PML protein in epidermis and hair follicles under the control of the bovine keratin 5 promoter. PML was highly expressed in the epidermis and hair follicles of these mice and was also increased in cultured keratinocytes where it was confined to nuclear bodies. While an overt skin phenotype was not detected in young transgenic mice, expression of keratin 10 (K10) was increased in epidermis and hair follicles and cultured keratinocytes. As mice aged, they exhibited extensive alopecia that was accentuated on the C57BL/6J background. Following skin tumor induction with 7, 12-dimethylbenz[a]anthracene (DMBA) as initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as promoter, papilloma multiplicity and size were decreased in the transgenic mice by 35%, and the conversion of papillomas to carcinomas was delayed. Cultured transgenic keratinocytes underwent premature senescence and upregulated transcripts for p16 and Rb but not p19 and p53. Together, these changes suggest that PML participates in regulating the growth and differentiation of keratinocytes that likely influence its activity as a suppressor for tumor development.
Collapse
Affiliation(s)
- Victoria M Virador
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research. National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 2008; 3:799-810. [PMID: 18451788 DOI: 10.1038/nprot.2008.50] [Citation(s) in RCA: 367] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protocols for preparing and culturing primary keratinocytes from newborn and adult mouse epidermis have evolved over the past 35 years. This protocol is now routinely applied to mice of various genetic backgrounds for in vitro studies of signaling pathways in differentiation and cell transformation, and for assessing the in vivo phenotype of altered keratinocytes in grafts of cells on immunodeficient mice. Crucial in the development and application of the procedure was the observation that keratinocytes proliferate in media of low calcium concentration, but rapidly commit to differentiation at calcium concentrations >0.07 mM after the initial attachment period. Preparing primary keratinocytes from ten newborn mice requires 2-3 h of hands-on time. Related procedures are also provided: preparing immature hair follicle buds, developing dermal hair follicles and fibroblasts from newborn mice, preparing primary keratinocytes from adult mice and grafting cell mixtures on athymic nude mice.
Collapse
|
6
|
Crigler L, Kazhanie A, Yoon TJ, Zakhari J, Anders J, Taylor B, Virador VM. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages. FASEB J 2007; 21:2050-63. [PMID: 17384147 PMCID: PMC2034200 DOI: 10.1096/fj.06-5880com] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The skin contains two known subpopulations of stem cells/epidermal progenitors: a basal keratinocyte population found in the interfollicular epithelium and cells residing in the bulge region of the hair follicle. The major role of the interfollicular basal keratinocyte population may be epidermal renewal, whereas the bulge population may only be activated and recruited to form a cutaneous epithelium in case of trauma. Using 3-dimensional cultures of murine skin under stress conditions in which only reserve epithelial cells would be expected to survive and expand, we demonstrate that a mesenchymal population resident in neonatal murine dermis has the unique potential to develop an epidermis in vitro. In monolayer culture, this dermal subpopulation has long-term survival capabilities in restricted serum and an inducible capacity to evolve into multiple cell lineages, both epithelial and mesenchymal, depending on culture conditions. When grafted subcutaneously, this dermal subpopulation gave rise to fusiform structures, reminiscent of disorganized muscle, that stained positive for smooth muscle actin and desmin; on typical epidermal grafts, abundant melanocytes appeared throughout the dermis that were not associated with hair follicles. The multipotential cells can be repeatedly isolated from neonatal murine dermis by a sequence of differential centrifugation and selective culture conditions. These results suggest that progenitors capable of epidermal differentiation exist in the mesenchymal compartment of an abundant tissue source and may have a function in mesenchymal-epithelial transition upon insult. Moreover, these cells could be available in sufficient quantities for lineage determination or tissue engineering applications.
Collapse
Affiliation(s)
- Lauren Crigler
- Laboratory of Cellular Carcinogenesis and Tumor Promotion. Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD 20892. US
| | - Amita Kazhanie
- Laboratory of Cellular Carcinogenesis and Tumor Promotion. Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD 20892. US
| | - Tae-Jin Yoon
- Department of Dermatology, College of Medicine, Gyeongsang National University, Jinju, KOREA
| | - Julia Zakhari
- Laboratory of Cellular Carcinogenesis and Tumor Promotion. Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD 20892. US
| | - Joanna Anders
- Laboratory of Cellular Carcinogenesis and Tumor Promotion. Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD 20892. US
| | - Barbara Taylor
- Laboratory of Cellular Carcinogenesis and Tumor Promotion. Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD 20892. US
| | - Victoria M. Virador
- Laboratory of Cellular Carcinogenesis and Tumor Promotion. Center for Cancer Research. National Cancer Institute, NIH, Bethesda, MD 20892. US
| |
Collapse
|
7
|
Rutberg SE, Kolpak ML, Gourley JA, Tan G, Henry JP, Shander D. Differences in Expression of Specific Biomarkers Distinguish Human Beard from Scalp Dermal Papilla Cells. J Invest Dermatol 2006; 126:2583-95. [PMID: 16810298 DOI: 10.1038/sj.jid.5700454] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Androgen exposure stimulates the growth of beard hair follicles. The follicle dermal papilla appears to be the site of androgen action; however, the molecular mechanisms that regulate this process are not well understood. In an attempt to identify genes that contribute to the androgen-responsive phenotype, we compared gene expression patterns in unstimulated and androgen-treated cultured human dermal papilla cells isolated from beard (androgen-sensitive) and occipital scalp (androgen-insensitive) hair follicles. Through this analysis, we identified three genes that are expressed at significantly higher levels in beard dermal papilla cells. One of these genes, sfrp-2 has been identified as a dermal papilla signature gene in mouse pelage follicles. Two of these genes, mn1 and atp1beta1, have not been studied in the hair follicle. A fourth, fibulin-1d, was slightly upregulated in beard dermal papilla cells. The differences in the expression of these genes in cultured beard and scalp dermal papilla cells reflected similar differences in microdissected dermal papilla isolated from intact beard and scalp follicles. Our findings introduce potentially novel signaling pathways in dermal papilla cells. In addition, this study supports that cultured dermal papilla cells provide a cell-based model system that is reflective of the biology of in vivo hair follicle cells.
Collapse
Affiliation(s)
- Susan E Rutberg
- Gillette/P&G Technical Center, Needham, Massachusetts 02492, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Panteleyev AA, Mitchell PJ, Paus R, Christiano AM. Expression patterns of the transcription factor AP-2alpha during hair follicle morphogenesis and cycling. J Invest Dermatol 2003; 121:13-9. [PMID: 12839558 DOI: 10.1046/j.1523-1747.2003.12319.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AP-2alpha is a member of a family of transcription factors expressed in cells of the epithelial and neural crest lineage. AP-2alpha plays an essential role in embryonic development and in regulation of epithelial gene transcription. To further characterize the role of AP-2alpha in skin biology, we assessed its expression in the skin of C57BL/6J mice during defined stages of hair follicle morphogenesis and cycling. During early hair follicle morphogenesis, AP-2alpha was upregulated in the epidermal placode, in the basal keratinocytes of the hair follicle bud, and then in the inner root sheath. The follicular papilla cells underwent a brief upregulation of AP-2alpha expression during the initiation of hair shaft formation and active hair follicle downward growth. Completion of hair follicle morphogenesis was associated with a marked reduction of AP-2alpha immunoreactivity in the lower portion of the hair follicle including both epithelial and mesenchymal compartments. In adolescent mouse skin, consistently strong AP-2alpha expression was found in the basal keratinocytes of the epidermis, in the hair follicle infundibulum, and in the sebocytes. In the follicular papilla, AP-2alpha was weakly expressed in telogen, significantly upregulated in early anagen, then gradually declined, and reappeared again in middle catagen. In the inner root sheaths, AP-2alpha expression was detected during early and middle anagen and during middle catagen stages. Prominent AP-2alpha expression was also seen in the zone of club hair formation. Therefore, AP-2alpha upregulation in both epithelial and mesenchymal hair follicle compartments was coordinated with initiation of major remodeling processes. Our findings support the use of the hair follicle as a model to explore the role of AP-2alpha in physiologic remodeling of developing organs and in reciprocal ectodermal-mesenchymal interactions.
Collapse
Affiliation(s)
- Andrey A Panteleyev
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Latanoprost, used clinically in the treatment of glaucoma, induces growth of lashes and ancillary hairs around the eyelids. Manifestations include greater thickness and length of lashes, additional lash rows, conversion of vellus to terminal hairs in canthal areas as well as in regions adjacent to lash rows. In conjunction with increased growth, increased pigmentation occurs. Vellus hairs of the lower eyelids also undergo increased growth and pigmentation. Brief latanoprost therapy for 2-17 days (3-25.5 microg total dosage) induced findings comparable to chronic therapy in five patients. Latanoprost reversed alopecia of the eyelashes in one patient. Laboratory experiments with latanoprost have demonstrated stimulation of hair growth in mice and in the balding scalp of the stumptailed macaque, a primate that demonstrates androgenetic alopecia. The increased number of visible lashes is consistent with the ability of latanoprost to induce anagen (the growth phase) in telogen (resting) follicles while inducing hypertrophic changes in the involved follicles. The increased length of lashes is consistent with the ability of latanoprost to prolong the anagen phase of the hair cycle. Correlation with laboratory studies suggests that initiation and completion of latanoprost hair growth effects occur very early in anagen and the likely target is the dermal papilla.
Collapse
Affiliation(s)
- Murray A Johnstone
- Glaucoma Consultants Northwest, Swedish Medical Center, Seattle, WA 98104, USA
| | | |
Collapse
|
10
|
Abstract
The Cre-loxP strategy has allowed us to generate the mice whose keratinocytes are devoid of Stat3, which play a pivotal role in the signal transduction following the stimulation with various growth factors/cytokines, such as EGF, HGF, or IL-6. Although keratinocyte-specific Stat3-disrupted mice were born normal with intact skin and the first hair cycle, they exhibited retardation of wound healing and absence of the second hair cycle onward, leading to development of spontaneous skin ulcers and alopecia as they aged. Thus, analyses of these mice reveal that Stat3 in keratinocytes contributes to the regeneration of epidermis and hair cycle process.
Collapse
Affiliation(s)
- S Sano
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | |
Collapse
|
11
|
Qureshi S, Al-Shabanah OA, Al-Harbi MM, Al-Bekairi AM, Raza M. Boric acid enhances in vivo Ehrlich ascites carcinoma cell proliferation in Swiss albino mice. Toxicology 2001; 165:1-11. [PMID: 11551427 DOI: 10.1016/s0300-483x(01)00396-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of boric acid, a boron carrier, on Ehrlich ascites carcinoma (EAC) cell-bearing mice was investigated in view of its importance in the boron neutron capture therapy and the influence of boron on proliferation and progression of cancer cells mediated by proteoglycans and collagen. The present study included the evaluation of boric acid for the effects on total count and viability of EAC cells in addition to their non-protein sulfhydryls (NP-SH) and malondialdehyde (MDA) contents as parameters for conjugative detoxication potency and possible oxidative damage. The EAC cell-bearing animals were also observed for the effect on survival, body weight changes, and histopathological evaluation of the tumors grown at the site of inoculation. The treatment with boric acid significantly increased the total number of peritoneal EAC cells and their viability. A significant increase in the body weight was observed that dose-dependently reached plateau levels by 20 days of treatment. Conversely, a reduction in the duration of survival of these animals was evident with the same protocol. Boric acid treatment resulted in a decrease in NP-SH contents with a concomitant increase in MDA levels in EAC cells as revealed by the results of the biochemical analysis. These data are supported by our results on histopathological investigations, which apparently showed fast growth, in addition to several mitotic figures and mixed inflammatory reaction, after treatment with boric acid. It seems likely that a particular combination of properties of boric acid, rather than a single characteristic alone, will provide useful information on the use of this boron carrier in neutron capture therapy.
Collapse
Affiliation(s)
- S Qureshi
- Department of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
12
|
Auger FA, Rouabhia M, Goulet F, Berthod F, Moulin V, Germain L. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 1998; 36:801-12. [PMID: 10367474 DOI: 10.1007/bf02518887] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of tissue engineering has opened several avenues in biomedical sciences, through ongoing progress. Skin substitutes are currently optimised for clinical as well as fundamental applications. The paper reviews the development of collagen-populated hydrated gels for their eventual use as a therapeutic option for the treatment of burn patients or chronic wounds: tools for pharmacological and toxicological studies, and cutaneous models for in vitro studies. These skin substitutes are produced by culturing keratinocytes on a matured dermal equivalent composed of fibroblasts included in a collagen gel. New biotechnological approaches have been developed to prevent contraction (anchoring devices) and promote epithelial cell differentiation. The impact of dermo-epidermal interactions on the differentiation and organisation of bio-engineered skin tissues has been demonstrated with human skin cells. Human skin substitutes have been adapted for percutaneous absorption studies and toxicity assessment. The evolution of these human skin substitutes has been monitored in vivo in preclinical studies showing promising results. These substitutes could also serve as in vitro models for better understanding of the immunological response and healing mechanism in human skin. Thus, such human skin substitutes present various advantages and are leading to the development of other bio-engineered tissues, such as blood vessels, ligaments and bronchi.
Collapse
Affiliation(s)
- F A Auger
- Département de chirurgie, Université Laval, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Misago N, Toda S, Sugihara H, Kohda H, Narisawa Y. Proliferation and differentiation of organoid hair follicle cells co-cultured with fat cells in collagen gel matrix culture. Br J Dermatol 1998; 139:40-8. [PMID: 9764147 DOI: 10.1046/j.1365-2133.1998.02312.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using rat skin, we studied the influence of fat cells on the proliferation and differentiation of organoid hair follicle cells in a three-dimensional collagen gel matrix culture system. We cultured organoid hair follicles embedded in collagen gel under each of the following three conditions: cell-free collagen gel for control experiments (condition 1); co-culture with fat cells in close apposition (condition 2); and co-culture with fat cells in spatial separation (condition 3). Outgrowths of epithelial cells from the organoid hair follicles associated with perifollicular proliferation of fibroblasts were observed under conditions 1 and 3. Under condition 2, proliferation of both organoid hair follicle cells and fibroblasts was inhibited, but differentiation of the hair follicle cells appeared to be accelerated. Fat cells are considered to have an inhibitory effect on the proliferation of perifollicular fibroblasts, which might have resulted in the inhibition of hair follicle cell proliferation and also in the better maintenance of normal follicular structure and integrity, allowing for hair-type differentiation to proceed. A direct accelerating effect of fat cells on hair follicle differentiation may also have been responsible. In a physiological state (co-culture with keratinocytes on the collagen gel), similar results were observed under conditions 1 and 2. The different findings under conditions 2 and 3 may be due to either of two possibilities: either the concentration gradient of the soluble factors released from fat cells, acting on either the hair follicle cells or the perifollicular fibroblasts as an inhibitor of proliferation, caused the difference in the results, or direct contact between the organoid hair follicle cells and fat cells may have influenced the accelerating effect of fat cells on the differentiation of hair follicle cells.
Collapse
Affiliation(s)
- N Misago
- Department of Internal Medicine, Saga Medical School, Japan
| | | | | | | | | |
Collapse
|
14
|
Obana N, Ito M, Kobayashi T, Nagai Y. Collagenolytic activities with differentiation of the cultured cells from the murine hair apparatus. J Dermatol Sci 1996; 13:83-6. [PMID: 8902658 DOI: 10.1016/0923-1811(95)00506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immature hair apparatus cells were cultured for 3 days to allow to proliferate and differentiate into several subpopulations including hair-shaft type cells on day 6. Zymographic and immunocytochemical studies of the culture media were performed to examine whether the differentiated and/or immature cells from the murine hair apparatus can secrete type IV collagenases. Zymography showed the presence of 72 and 92 kDa type IV collagenases in media, in which hair apparatus cells had been cultured for 3 and 6 days. Most of the cells cultured for 3 and 6 days showed positive reactions with the mouse anti-gelatinase monoclonal antibody in the perinuclear cytoplasm. These data suggest that the differentiated cells as well as immature cells in the hair apparatus may retain the ability to produce and secrete 72 and 92 kDa collagenases.
Collapse
Affiliation(s)
- N Obana
- Hair Care Research Laboratory, Sunstar Inc., Osaka, Japan
| | | | | | | |
Collapse
|
15
|
Abstract
Growth factors are polypeptides that regulate growth and differentiation of many cell types. Different growth factor families including the epidermal growth factor (EGF)-related ligands, fibroblast growth factors (FGF), transforming growth factor-beta (TGF-beta), insulin-like growth factor (IGF), hepatocyte growth factor/scatter factor (HGF/SF), and platelet-derived growth factor (PDGF) have been shown to be crucial for the regulation of the hair cycle and hair growth. Growth factors and their receptors have been localized to the skin and hair follicles. Their biological activities on cells comprising the hair follicle have been tested in vitro and increasingly in transgenic mice. Herein we review selected important aspects of growth factors with regard to the hair organ, its development, and the hair growth cycle.
Collapse
Affiliation(s)
- D Peus
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
16
|
Scandurro AB, Wang Q, Goodman L, Ledbetter S, Dooley TP, Yuspa SH, Lichti U. Immortalized rat whisker dermal papilla cells cooperate with mouse immature hair follicle buds to activate type IV procollagenases in collagen matrix coculture: correlation with ability to promote hair follicle development in nude mouse grafts. J Invest Dermatol 1995; 105:177-83. [PMID: 7636298 DOI: 10.1111/1523-1747.ep12317089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An in vivo nude mouse graft model and an in vitro collagen matrix culture system were used to study interactions of immature hair follicle buds from newborn mice with clonally derived AdE1A-12S-immortalized rat whisker dermal papilla cell lines. Of the 19 available dermal papilla cell lines, four consistently supported good hair follicle development and hair growth in grafts. Seven cell lines were clearly negative in this assay, and the remaining eight cell lines yielded poor to moderate hair growth. As a correlate to in vivo extracellular matrix remodeling accompanying hair follicle development, type IV collagenase activity in the medium from cocultures of dermal papilla cells and hair follicle buds was analyzed by gelatin zymography. Hair follicle buds cultured alone secrete primarily the 92-kDa type IV procollagenase. Cocultivation of hair follicle buds with eight of the dermal papilla cell lines resulted in activation of this proenzyme and activation of the 72-kDa and 92-kDa type IV procollagenases produced by the dermal papilla cells. Seven of these eight dermal papilla cell lines support hair growth in the graft system. In the absence of dermal papilla cells, several growth factors induced activation of the 92-kDa procollagenase secreted by hair follicle buds cultured in serum-free medium: epidermal growth factor, transforming growth factor alpha, acidic fibroblast growth factor, and keratinocyte growth factor. The current working hypothesis is that a) hair follicle epithelial cells interact with dermal papilla cells in coculture by mutual induction of growth factors and cytokines that stimulate the release and activation of matrix remodeling proteases; and b) the ability of dermal papilla cells to interact with hair follicle epithelial cells in this way may be crucial for controlled dermal matrix remodelling during HF development.
Collapse
Affiliation(s)
- A B Scandurro
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
In this review we tabulated molecules which have been experimentally identified to be associated with, or play a role in, hair follicle growth. While compiling these data we were impressed by the fact that this field is only now beginning to be developed in terms of molecular analysis. Ironically, hair was used in some of the earliest molecular approaches to biologic structure (e.g. Astbury and Street, 1931), but the field did not develop from there. From our review we have come to the following conclusions. (1) As indicated by the growing number of reports dealing with follicle-associated molecules in the past 3 years, the field of hair biology has entered a new molecular era. (2) In many reported hair biology studies not enough emphasis has been placed on the fact that the follicle is a dynamic structure. All too often a study is limited to follicles of one particular phase of the cycle or one phase of development. Students in the field have to be more sensitive to the remarkable changes that this deceptively simple structure can undergo during its cycle. (3) Although we have not been able to find any molecules unique to the follicle, some of the structural molecules come close to an ideal tool. It is our impression that even more specific molecule tags will be found. Whether this requires a subtraction library approach or gene mapping of specific mutants is not yet clear. It would appear that the large, diverse family of intermediate filament-associated proteins will prove to be an excellent source of unique follicle-labeling molecules. (4) There is an acute need for molecules which distinguish the phases of the cycle, e.g. telogen from early anagen. Telogen is by far the most difficult phase to identify morphologically since the earliest phase of anagen and the latest phase of catagen may appear structurally like telogen. That these phases are functionally distinguishable must imply a molecular difference. As the number of recognized hair follicle-associated molecules and their interactions increase, it will be essential to assemble libraries of highly specific RNA and antibody probes for localization and mapping studies. We recognize that this review, as written, is imperfect. It is particularly deficient in making any effort towards identifying unifying principles of structure and function. We look forward to returning to this subject within 3 years.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K S Stenn
- Skin Biology Research Center of Johnson and Johnson, R.W. Johnson Pharmaceutical Institute, Raritan, NJ 08869
| | | | | |
Collapse
|