1
|
Stevens WG, Perez JL, Pham LD, Jimenez Lozano JN. Expression of HSP70 in Human Skin After Cryolipolysis Treatment. Aesthet Surg J 2023; 43:NP910-NP915. [PMID: 37279585 PMCID: PMC10575600 DOI: 10.1093/asj/sjad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Cryolipolysis nonsurgically targets and reduces subcutaneous fat through controlled cooling of skin and underlying fatty tissue. Although skin changes after cryolipolysis treatment have been observed clinically, the mechanisms by which these occur are not well understood. OBJECTIVES The aim of this study was to investigate the expression of heat shock protein 70 (HSP70) in the epidermal and dermal layers of human skin following cryolipolysis treatment. METHODS Subjects (N = 11; average age, 41.8 years; average BMI, 29.59 kg/m2) were recruited to receive cryolipolysis treatment with a vacuum cooling cup applicator (-11°C/35 minutes) prior to abdominoplasty surgery. Treated and untreated abdominal tissue samples were harvested immediately after surgery (average follow-up, 15 days; range, 3 days to 5 weeks). Immunohistochemistry for HSP70 was performed on all samples. Slides were digitized and quantified in epidermal and dermal layers. RESULTS There was higher epidermal and dermal HSP70 expression in cryolipolysis-treated pre-abdominoplasty samples vs untreated samples. There was a 1.32-fold increase of HSP70 expression in the epidermis (P < .05) and a 1.92-fold increase in the dermis (P < .04) compared with untreated samples. CONCLUSIONS We found significant induction of HSP70 after cryolipolysis treatment in epidermal and dermal layers. HSP70 has potential therapeutic benefits and is recognized to have a role in skin protection and adaption after thermal stress. Although cryolipolysis is popular for subcutaneous fat reduction, cryolipolytic HSP induction in the skin may prove valuable for additional therapeutic applications, including skin wound healing, remodeling, rejuvenation, and photoprotection. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- W Grant Stevens
- Corresponding Author: Dr W. Grant Stevens, University of Southern California, 704 Manhattan Beach Blvd, Manhattan Beach, CA 90266, USA. E-mail:
| | | | | | | |
Collapse
|
2
|
Caputo F, Barranco R, Ventura F, Fracasso T. Immunohistochemical detection of Fibronectin, P-Selectin, FVIII, HSP-70 and MRP-8 in the skin of ligature marks of suicidal hangings. J Forensic Leg Med 2023; 96:102524. [PMID: 37075596 DOI: 10.1016/j.jflm.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
The determination of vitality of skin injuries is one of the most central research areas in forensic pathology for it is often necessary to discern antemortem from postmortem damage. Typical is the case of a hanging, which should be distinguished from the postmortem suspension of a body. In this study, 15 human skin samples from ligature marks (study group) of victims of suicidal hanging and 15 uninjured skin samples (negative control group) were analyzed. In addition, 15 skin samples from ecchymoses in homicide victims with short survival intervals were investigated as a positive control group. Sections were processed for immunohistochemistry in order to detect the expression of Fibronectin, P-Selectin, FVIII, HSP-70, and MRP8. Immunohistochemical reactions were classified semiquantitatively (mild - score 1, moderate - score 2, and intense - score 3). In the ligature marks, Fibronectin was significantly less expressed compared to ecchymoses. The expression was similar to hanging marks and uninjured skin. In both ligature marks and ecchymoses, the expression of P-Selectin was significantly increased compared to uninjured skin. In both ligature marks and ecchymoses, expression of HSP-70 was significantly decreased in the epidermis compared to uninjured skin. In both ligature marks and ecchymoses, the expression of FVIII and MRP8 was significantly increased in the dermis and hypodermis compared to uninjured skin. The results of this study show that the immunohistochemical study of early inflammatory and coagulation factors could help determine the vitality of ligature marks. The combined analysis of P-Selectin, FVIII, HSP-70, and MRP-8 can be considered for this purpose.
Collapse
Affiliation(s)
- Fiorella Caputo
- University of Genova, Department of Legal and Forensic Medicine, Via De Toni 12, Genova, 16132, Italy; University of Catanzaro, Department of Legal and Forensic Medicine, Viale Europa, Catanzaro, 88100, Italy
| | - Rosario Barranco
- University of Genova, Department of Legal and Forensic Medicine, Via De Toni 12, Genova, 16132, Italy.
| | - Francesco Ventura
- University of Genova, Department of Legal and Forensic Medicine, Via De Toni 12, Genova, 16132, Italy
| | - Tony Fracasso
- University Center of Legal Medicine, Lausanne Geneva, Geneva University Hospitals, Switzerland
| |
Collapse
|
3
|
He Y, Liu X, De J, Kang S, Munday JS. Altered Hypoxia-Induced and Heat Shock Protein Immunostaining in Secondary Hair Follicles Associated with Changes in Altitude and Temperature in Tibetan Cashmere Goats. Animals (Basel) 2021; 11:ani11102798. [PMID: 34679820 PMCID: PMC8532893 DOI: 10.3390/ani11102798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
This experiment compared secondary hair follicles (SFs) in Tibetan cashmere goats from two different steppes that were at different altitudes and had different temperatures. Twenty-four 2-year-old goats were studied. Twelve goats were from Rikaze in Tibet which is at an altitude of above 5000 m with an average temperature of 0 °C. The other 12 studied goats were from Huan County of Gansu Province which is around 2000 m above sea level with an average temperature of 9.2 °C. The structural features of SFs were assessed using light microscopy and transmission electron microscopy. The presence of HIF-1a, HIF-2a, HIF-3a, HSP27, and HOXC13 proteins was studied using immunohistochemistry and immunofluorescence. Light and electron microscopy revealed that the SFs of the Tibetan cashmere goats that lived in the Rikaze Steppe were in the proanagen stage in May. However, the SFs of the goats from the lower warmer Huan County were in the anagen stage at the same time. Immunohistochemistry revealed intense immunostaining for HIF-1a protein in the inner root sheath (IRS) and hair shaft (HS); immunostaining against HIF-2a in the outer root sheath (ORS) and IRS; HIF-3a protein immunostaining in the ORS; HSP27 immunostaining in the ORS, IRS, and HS; and HOXC13 immunostaining in the ORS and HS. HIF-1a protein expression in the IRS and HS was higher than the expression in the ORS (p < 0.05) while the expression of HIF-2a protein was higher in the ORS and IRS than the HS (p < 0.05). The expression of HIF-3a protein was higher in the ORS than in the IRS (p < 0.05). Expression of HOXC13 protein was higher in the ORS than in the IRS and HS (p < 0.05). Immunostaining of HIF-1a, HIF-2a, and HSP27 protein was significantly higher in SFs from cashmere goats from Rikaze than in goats from Huan (p < 0.05). In contrast, HOX13 protein immunostaining was significantly higher in cashmere goats from Huan than from Rikaze (p < 0.05). Significant differences were observed in the SFs of cashmere goats from two locations that differ in altitude and temperature. This suggests the differences in the secondary hair follicles could be due to the hypoxia and lower temperatures experienced by the goats in Rikaze. These results are useful in understanding how altitude and temperature influence SF development. Hair produced by the SFs are used for down fiber. Therefore, understanding of the factors that influence SF development will allow the production and harvest of these valuable fibers to be maximized.
Collapse
Affiliation(s)
- Yanyu He
- College of Animal Science and Technology, Agricultural University, Lanzhou 730070, China;
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (X.L.); (J.S.M.)
| | - Jie De
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China;
| | - Saihong Kang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - John S. Munday
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
- Correspondence: (X.L.); (J.S.M.)
| |
Collapse
|
4
|
Scieglinska D, Krawczyk Z, Sojka DR, Gogler-Pigłowska A. Heat shock proteins in the physiology and pathophysiology of epidermal keratinocytes. Cell Stress Chaperones 2019; 24:1027-1044. [PMID: 31734893 PMCID: PMC6882751 DOI: 10.1007/s12192-019-01044-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Heat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorota Scieglinska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Zdzisław Krawczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Damian Robert Sojka
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka Gogler-Pigłowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute-Oncology Center Gliwice Branch, ul. Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
5
|
Seleem AA. Induction of hyperpigmentation and heat shock protein 70 response to the toxicity of methomyl insecticide during the organ development of the Arabian toad, Bufo arabicus (Heyden,1827). J Histotechnol 2019; 42:104-115. [PMID: 31492089 DOI: 10.1080/01478885.2019.1619653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methomyl (MET) is a carbamate insecticide which is used as a substitute for organophosphorus compounds to protect crops against insects. The present study aims to evaluate the cytoprotection response of pigment cells and heat shock protein 70 (HSP70) after exposure to MET during the tadpole developmental stages of the Arabian toad, Bufo arabicus. Three developmental larval stages of the toad were selected and divided into two groups; Control and MET-exposed (MET-EX) tadpoles (10ppm). MET-EX tadpoles showed an increased number of pigment cells in the liver, kidney, anterior eye chamber, and skin tissues as compared to the control. The glycogen content in the developing liver and muscles (myotomes) of MET-EX tadpoles was decreased as compared to the control. In the MET-EX tadpoles, immunohistochemical staining showed an increase of HSP70 expression in the liver hepatocytes, the nucleated red blood cells (nRBC) in kidney glomeruli, the iridocorneal angle of anterior eye chamber, and the skin as compared to the control. The current study concluded that pigment cells and HSP70 represented a cytoprotecting response against MET insecticide during the organ development of B. arabicas tadpoles. Therefore, MET use should be regularly monitored in the environment to protect animals and human from exposure to this insecticide.
Collapse
Affiliation(s)
- Amin Abdou Seleem
- Zoology Department, Faculty of Science, Sohag University , Sohag , Egypt.,Biology Department, Faculty of Science and Arts, Al-Ula, Taibah University , Medina , Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Song LL, Cui Y, Yu SJ, Liu PG, He JF. TGF-β and HSP70 profiles during transformation of yak hair follicles from the anagen to catagen stage. J Cell Physiol 2019; 234:15638-15646. [PMID: 30723905 DOI: 10.1002/jcp.28212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Transforming growth factor-β (TGF-β) and heat shock protein 70 (HSP70) are important for the hair follicle (HF) cycle, but it is unclear whether they participate in HF regression in yak skin. In this study, we investigated the role of TGF-β, TGF-βRII, and HSP70 in the transition from anagen to catagen of HFs. The results showed that TGF-β2 transcription was significantly higher than that of TGF-β1 and TGF-β3 in the same periods. Meanwhile, the expressions of TGF-β2, TGF-βRII, and caspase-3 were higher in the catagen phase than that in mid-anagen, and some TGF-βRII-positive HF cells were terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL)-positive. Moreover, the HSP70 protein levels in mid-anagen were higher than those in late-anagen and catagen. These results suggested that TGF-β2 plays a major role in catagen induction in yak HFs, which might be achieved via TGF-βRII-mediated apoptosis in HF epithelial cells. In contrast, HSP70 might protect epithelial cells from apoptosis and ultimately inhibit HF regression. In conclusion, TGF-β2 has positive effects, whereas HSP70 has negative effects, on catagen induction.
Collapse
Affiliation(s)
- Liang-Li Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Si-Jiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng-Gang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jun-Feng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
7
|
Iacopetta K, Collins-Praino LE, Buisman-Pijlman FTA, Hutchinson MR. Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior? Brain Behav Immun 2018; 73:125-132. [PMID: 30009997 DOI: 10.1016/j.bbi.2018.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
High ultraviolet (UV) light exposure on the skin acts as a reinforcing stimulus, increasing sun-seeking behavior and even addiction-like sun seeking behavior. However, the physiological mechanisms that underlie this process remain to be defined. Here, we propose a novel hypothesis that neuroimmune signaling, arising from inflammatory responses in UV-damaged skin cells, causes potentiated signaling within the cortico-mesolimbic pathway, leading to increased sun-seeking behaviors. This hypothesized UV-induced, skin-to-brain signaling depends upon cell stress signals, termed alarmins, reaching the circulation, thereby triggering the activation of innate immune receptors, such as toll-like receptors (TLRs). This innate immune response is hypothesized to occur both peripherally and centrally, with the downstream signaling from TLR activation affecting both the endogenous opioid system and the mesolimbic dopamine pathway. As both neurotransmitter systems play a key role in the development of addiction behaviors through their actions at key brain regions, such as the nucleus accumbens (NAc), we hypothesize a novel connection between UV-induced inflammation and the activation of pathways that contribute to the development of addiction. This paper is a review of the existing literature to examine the evidence which suggests that chronic sun tanning resembles a behavioral addiction and proposes a novel pathway by which persistent sun-seeking behavior could affect brain neurochemistry in a manner similar to that of repeated drug use.
Collapse
Affiliation(s)
- Krystal Iacopetta
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Lyndsey E Collins-Praino
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Femke T A Buisman-Pijlman
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Mark R Hutchinson
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Gogler-Pigłowska A, Klarzyńska K, Sojka DR, Habryka A, Głowala-Kosińska M, Herok M, Kryj M, Halczok M, Krawczyk Z, Scieglinska D. Novel role for the testis-enriched HSPA2 protein in regulating epidermal keratinocyte differentiation. J Cell Physiol 2017; 233:2629-2644. [PMID: 28786487 DOI: 10.1002/jcp.26142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023]
Abstract
HSPA2, a poorly characterized member of the HSPA (HSP70) chaperone family, is a testis-enriched protein involved in male germ cell differentiation. Previously, we revealed that HSPA2 is present in human stratified epithelia, including epidermis, however the contribution of this protein to epithelial biology remained unknown. Here, we show for the first time that HSPA2 is expressed in basal epidermal keratinocytes, albeit not in keratinocytes exhibiting features attributed to primitive undifferentiated progenitors, and participates in the keratinocyte differentiation process. We found that HSPA2 is dispensable for protection of HaCaT keratinocytes against heat shock-induced cytotoxicity. We also shown that lentiviral-mediated shRNA silencing of HSPA2 expression in HaCaT cells caused a set of phenotypic changes characteristic for keratinocytes committed to terminal differentiation such as reduced clonogenic potential, impaired adhesiveness and increased basal and confluency-induced expression of differentiation markers. Moreover, the fraction of undifferentiated cells that rapidly adhered to collagen IV was less numerous in HSPA2-deficient cells than in the control. In a 3D reconstructed human epidermis model, HSPA2 deficiency resulted in accelerated development of a filaggrin-positive layer. Collectively, our results clearly show a link between HSPA2 expression and maintenance of keratinocytes in an undifferentiated state in the basal layer of the epidermis. It seems that HSPA2 could retain keratinocytes from premature entry into the terminal differentiation process. Overall, HSPA2 appears to be necessary for controlling development of properly stratified epidermis and thus for maintenance of skin homeostasis.
Collapse
Affiliation(s)
- Agnieszka Gogler-Pigłowska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Klarzyńska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland.,Department of Molecular Biology and Genetics, Medical University of Silesia in Katowice, Katowice, Poland
| | - Damian R Sojka
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Anna Habryka
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Magdalena Głowala-Kosińska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marcin Herok
- Nencki Institute of Experimental Biology Polish Academy of Science, Warsaw, Poland.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Mariusz Kryj
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Monika Halczok
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Zdzisław Krawczyk
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dorota Scieglinska
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
9
|
Yang X, Cui Y, Yue J, He H, Yu C, Liu P, Liu J, Ren X, Meng Y. The histological characteristics, age-related thickness change of skin, and expression of the HSPs in the skin during hair cycle in yak (Bos grunniens). PLoS One 2017; 12:e0176451. [PMID: 28463974 PMCID: PMC5413005 DOI: 10.1371/journal.pone.0176451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE This experiment was conducted to study the histological characteristics, age-related thickness changes, and expression of HSPs in the skin of yak. METHODS A total of 20 yaks (10 males and 10 females) were used. Different regions of the normal skin of three different ages (newborn, half-year-old and adult) of yaks were harvested for histological study and thickness measurement. Biopsy samples were taken from the scapula regions of the skin from the same five approximately 1-year-old yaks during the hair cycle (telogen, anagen and catagen). RT-PCR, western blot and immunohistochemistry methods using the mRNA and protein levels were used to detect the expression of HSP27, HSP70 and HSP90. RT-PCR method was used to detect the mRNA expression of CGI-58 and KDF1. The IPP6.0 software was used to analyze the immunohistochemistry and measure the thickness of the skin. RESULTS The general histological structure of hairy yak skin was similar to other domestic mammals. The unique features included prominent cutaneous vascular plexuses, underdeveloped sweat glands, a large number of nasolabial glands in the nasolabial plate, and hair follicle groups composed of one primary follicle and several secondary follicles. The skin, epidermis and dermis thickness did vary significantly between different body regions and different ages. The thickness of the skin, epidermis and dermis increased from newborn to adult in yaks. Yak skin thickness decreased from dorsally to ventrally on the trunk. The skin on the lateral surface was thicker than the skin on the medial surface on the limbs. HSP27, HSP70 and HSP90 showed different expression patterns during the hair cycle using RT-PCR, western blot and immunohistochemistry methods. The expression of HSP27 mRNA and protein in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of HSP70 mRNA and protein in the telogen stage was the highest, followed by the anagen stage, and the expression in the catagen stage was the lowest. The expression of HSP90 mRNA and protein in the anagen stage was the highest, followed by the telogen stage, and the expression in the catagen stage was the lowest. HSPs were mainly expressed in the outer root sheath of hair follicle during the hair cycle, also expressed in epidermis, sebaceous gland and sweat gland in the skin of Yak. The expression of CGI-58 mRNA in the anagen stage was the highest, followed by the catagen stage, and the expression in the telogen stage was the lowest. The expression of KDF1 mRNA in the telogen stage was the highest, followed by the catagen stage, and the expression in the anagen stage was the lowest. MEANING In this study, we examined and fully described the histology of normal skin in Yak and measured the skin thickness of different ages and different regions in Yak. These data may be useful to better understand and appreciate the adaptability features of yak skin. Our investigation reports the expression patterns of HSPs in yak skin for the first time. The different expression pattern of HSPs during the hair cycle suggests they may play different roles in yak hair follicle biology.
Collapse
Affiliation(s)
- Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jing Yue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Chuan Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jun Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiandong Ren
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Expression of HSP70 genes in skin of zebu (Tharparkar) and crossbred (Karan Fries) cattle during different seasons under tropical climatic conditions. J Therm Biol 2016; 63:58-64. [PMID: 28010816 DOI: 10.1016/j.jtherbio.2016.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/21/2023]
Abstract
Skin is most important environmental interface providing a protective envelope to animals. It's always under the influence of both internal and external stressors. Heat shock proteins (HSP) are highly conserved stress proteins which play crucial roles in environmental stress tolerance and thermal adaptation. Present study was planned to observe the relative mRNA expression of inducible (HSP70.1 and HSP70.2) and constitutive (HSP70.8) HSP in skin of zebu (Tharparkar) and crossbred (Karan Fries) cattle during different seasons. Skin biopsies were collected from rump region of each animal, aseptically during winter, spring and summer season. Quantitative real time polymerase chain reaction was performed to examine the gene expression of constitutive (HSP70.8) and inducible (HSP70.1 and HSP70.2) HSP in skin of both the breeds during different seasons. Present study observed higher expression of both constitutive and inducible HSP genes in both the breeds during summer and winter than spring season, but magnitude of increase was higher during summer than winter. During summer season, expression pattern of HSPs in skin showed breed differences, where constitutive HSP expression was higher in Tharparkar than Karan Fries and that of inducible HSP was higher in Karan Fries than Tharparkar. Hence, present study suggested that HSP may be conveniently used as biomarkers for assessing protective response of skin against heat stress in zebu and crossbred cattle. Variation in expression between breeds is associated with their heat tolerance and thermal adaptability. In summary, skin of zebu cattle (Tharparkar) is more resistant to summer stress than crossbred (Karan Fries), providing greater protection against heat stress during summer season. Superior skin protective mechanism of zebu (Tharparkar) than crossbred (Karan-Fries) cattle against heat stress may contribute to superior adaptability of zebu cattle to tropical climatic conditions than crossbreed.
Collapse
|
11
|
Abstract
Diabetes is a chronic disease, and its prevalence continues to rise and can increase the risk for the progression of microvascular (such as nephropathy, retinopathy and neuropathy) and also macrovascular complications. Diabetes is a condition in which the oxidative stress and inflammation rise. Heat shock proteins (HSPs) are a highly conserved family of proteins that are expressed by all cells exposed to environmental stress, and they have diverse functions. In patients with diabetes, the expression and levels of HSPs decrease, but these chaperones can aid in improving some complications of diabetes, such as oxidative stress and inflammation. (The suppression of some HSPs is associated with a generalized increase in tissue inflammation.) In this review, we summarize the current understanding of HSPs in diabetes as well as their complications, and we also highlight their potential role as therapeutic targets in diabetes.
Collapse
|
12
|
Kao JK, Lee CH, Lee MS, Hsu CS, Tsao LY, Tsai YG, Shieh JJ, Yang RC. Heat-shock pretreatment reduces expression and release of TSLP from keratinocytes under Th2 environment. Pediatr Allergy Immunol 2016; 27:62-9. [PMID: 26419317 DOI: 10.1111/pai.12482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Atopic dermatitis is a chronic, relapsing inflammatory disease of the skin. Current therapy is not curative, and recalcitrant disease is a big stress and challenge for parents and physicians. This study explored the potential role of heat-shock protein 70 (HSP-70) and its anti-inflammatory effects on keratinocyte under TH2 environment. METHODS Human keratinocyte cell line (HaCa T) was stimulated with IL-4, IL-13, and TNF-α to synthesize and secrete thymic stromal lymphopoietin (TSLP), an important cytokine of immunopathogenesis in atopic dermatitis. Heat shock was performed by immersing the cell-contained flash into a water bath of 45°C for 20 min. Cell viability, TSLP expression, and secretion of HaCa T cells were measured and compared. Possible regulatory mechanisms influencing the expression of TSLP, such as the STAT6 and NF-κB signal pathways, were investigated. RESULTS Heat-shock treatment induced intracellular HSP-70 expression in HaCa T cells without affecting cell viability. The induced expression and secretion of TSLP in HaCa T cells were suppressed by heat shock. The NF-κB signal pathway was inhibited by heat shock, leading to decreased TSLP expression and secretion. CONCLUSION Heat stress-induced HSPs can significantly reduce the production and secretion of TSLP from HaCaT cells under Th2 environment. Thus, the evidence highlights the potential role of HSP-70 for atopic dermatitis in the future.
Collapse
Affiliation(s)
- Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Cheng-Han Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Ming-Sheng Lee
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Cheng-Sheng Hsu
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Long-Yen Tsao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua County, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung City, Taiwan.,Department of Education and Research, Taichung Veterans General Hospital, Taichung City, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Rei-Cheng Yang
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan.,Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
13
|
Kashiwagi S, Brauns T, Gelfand J, Poznansky MC. Laser vaccine adjuvants. History, progress, and potential. Hum Vaccin Immunother 2015; 10:1892-907. [PMID: 25424797 DOI: 10.4161/hv.28840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- a Vaccine and Immunotherapy Center; Division of Infectious Diseases; Department of Medicine, Massachusetts General Hospital; Charlestown, MA USA
| | | | | | | |
Collapse
|
14
|
Yusuf N, Nasti TH, Ahmad I, Chowdhury S, Mohiuddin H, Xu H, Athar M, Timares L, Elmets CA. In Vivo Suppression of Heat Shock Protein (HSP)27 and HSP70 Accelerates DMBA-Induced Skin Carcinogenesis by Inducing Antigenic Unresponsiveness to the Initiating Carcinogenic Chemical. THE JOURNAL OF IMMUNOLOGY 2015; 194:4796-803. [PMID: 25840912 DOI: 10.4049/jimmunol.1402804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/13/2015] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (HSPs) are constitutively expressed in murine skin. HSP27 is present in the epidermis, and HSP70 can be found in both the epidermis and dermis. The purpose of this study was to investigate the role of these proteins in cutaneous chemical carcinogenesis and to determine whether their effects on cell-mediated immune function were a contributing factor. In vivo inhibition of HSP27 and HSP70 produced a reduction in the T cell-mediated immune response to 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene in C3H/HeN mice and resulted in a state of Ag-specific tolerance. When mice were pretreated with anti-HSP27 and anti-HSP70 Abs in vivo prior to subjecting them to a standard two-stage DMBA/12-O-tetradecanoylphorbol-13-acetate cutaneous carcinogenesis protocol, the percentage of mice with tumors was much greater (p < 0.05) in anti-HSP27- and HSP70-pretreated animals compared with mice pretreated with control Ab. Similar results were obtained when the data were evaluated as the cumulative number of tumors per group. Mice pretreated with HSP27 and HSP70 Abs developed more H-ras mutations and fewer DMBA-specific cytotoxic T lymphocytes. These findings indicate that in mice HSP27 and HSP70 play a key role in the induction of cell-mediated immunity to carcinogenic polyaromatic hydrocarbons. Bolstering the immune response to carcinogenic polyaromatic hydrocarbons may be an effective method for prevention of the tumors that they produce.
Collapse
Affiliation(s)
- Nabiha Yusuf
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Tahseen H Nasti
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and
| | - Israr Ahmad
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and
| | - Sanim Chowdhury
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and
| | - Hasan Mohiuddin
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and
| | - Hui Xu
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and
| | - Laura Timares
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama, Birmingham, AL 35294; and Veteran Affairs Medical Center, Birmingham, AL 35294
| |
Collapse
|
15
|
Ortner V, Ludwig A, Riegel E, Dunzinger S, Czerny T. An artificial HSE promoter for efficient and selective detection of heat shock pathway activity. Cell Stress Chaperones 2015; 20:277-88. [PMID: 25168173 PMCID: PMC4326385 DOI: 10.1007/s12192-014-0540-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022] Open
Abstract
Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.
Collapse
Affiliation(s)
- Viktoria Ortner
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Alfred Ludwig
- Department of Agrarian Production, Genetics and Microbiology Research Group Public, University of Navarre, Pamplona, Navarre Spain
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Sarah Dunzinger
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| |
Collapse
|
16
|
Yoshihisa Y, Hassan MA, Furusawa Y, Tabuchi Y, Kondo T, Shimizu T. Alkannin, HSP70 inducer, protects against UVB-induced apoptosis in human keratinocytes. PLoS One 2012; 7:e47903. [PMID: 23110127 PMCID: PMC3478268 DOI: 10.1371/journal.pone.0047903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/17/2012] [Indexed: 12/05/2022] Open
Abstract
Alkannin is an active constituent from the root extract of Alkanna tinctoria of the Boraginaceae family and it may have utility as a heat shock protein 70 (HSP70) inducer in living organisms. Here, the effects of alkannin-induced HSP70 on ultraviolet (UV) B (40 mJ/cm2)-induced apoptosis were investigated in human keratinocyte HaCaT cells. Pretreatment of cells with alkannin (1 µM) caused significant inhibition of UVB-induced apoptosis and caspase-3 cleavage. On the other hand, the addition of KNK437 (HSP70 inhibitor) reversed the action of alkannin increasing UVB-induced apoptosis in a dose-dependent manner. In addition, differences in gene expression associated with the suppression of UVB-induced apoptosis in the presence of alkannin were investigated using Gene Chip assay. Our results indicate that alkannin suppresses UVB-induced apoptosis through the induction of HSP70 in human keratinocytes, and therefore, we suggest the usefulness of using alkannin as an antiaging agent.
Collapse
Affiliation(s)
- Yoko Yoshihisa
- Department of Dermatology, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mariame Ali Hassan
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yukihiro Furusawa
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tadamichi Shimizu
- Department of Dermatology, Life Science Research Center, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
17
|
Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin. Am J Ther 2012; 19:e69-89. [PMID: 20861720 DOI: 10.1097/mjt.0b013e3181e71fb7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include encapsulation into hydrophobic carriers, a combination with penetration enhancers, active electrical transport, or chemical modification to increase hydrophobicity.
Collapse
|
18
|
Sedlackova L, Sosna A, Vavrincova P, Frýdl J, Guerriero V, Raynes DA, Hromadnikova I. Heat shock protein gene expression profile may differentiate between rheumatoid arthritis, osteoarthritis, and healthy controls. Scand J Rheumatol 2011; 40:354-7. [DOI: 10.3109/03009742.2011.552522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Babizhayev MA, Nikolayev GM, Nikolayeva JG, Yegorov YE. A survey and analysis of the role of molecular chaperone proteins and imidazole-containing dipeptide-based compounds as molecular escorts into the skin during stress, injury, water structuring and other types of cutaneous pathophysiology. Int J Cosmet Sci 2011; 33:1-16. [DOI: 10.1111/j.1468-2494.2010.00601.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
A human skin explant model to study molecular changes in response to fractional photothermolysis: Spatio-temporal expression of HSP70. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.mla.2009.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Helbig D, Simon JC, Paasch U. Epidermal and dermal changes in response to various skin rejuvenation methods. Int J Cosmet Sci 2010; 32:458-69. [DOI: 10.1111/j.1468-2494.2010.00573.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Helbig D, Moebius A, Simon JC, Paasch U. Nonablative skin rejuvenation devices and the role of heat shock protein 70: results of a human skin explant model. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:038002. [PMID: 20615048 DOI: 10.1117/1.3449736] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Nonablative thermal laser therapy with a 1,540-nm laser induces controlled, spatially determined thermal damage, allowing subsequent collagen remodeling while preserving the epidermis. A photorejuvenation effect using nonthermal nonablative stimulation of cells with low energy and narrow band light has been termed photomodulation. Light emitting diodes (LEDs) are narrow band emitters that lead to photomodulation via stimulation of mitochondrial cell organelles. In a previous study, we demonstrated in a human skin explant model that heat shock protein 70 (HSP70) plays a pivotal role in the initiation of skin remodeling after ablative fractional photothermolysis. To test its importance in nonablative laser therapy and photomodulation, the spatio-temporal expression of HSP70 is investigated in response to a 1540-nm laser treatment and six different LED therapies. An Er:glass laser is used with a 1-Hz repetition rate, 30-J/cm(2) fluence, and a hand piece with a 2-mm spot size. Nonthermal nonablative treatment is performed using two LED (LEDA SCR red light: 635 nm, 40 to 120 W/cm(2), 40 to 120 J/cm(2); LEDA SCR yellow light: 585 nm, 16 to 35 W/cm(2), 20 to 100 J/cm(2); spot size 16 x 10 cm). Immediate responses as well as responses 1, 3, or 7 days postprocedure are studied; untreated skin explants serve as control. Immunohistochemical investigation (HSP70) is performed in all native, nontreated, and Er:glass laser- or LED-treated samples (n=175). Nonablative laser therapy leads to a clear time-dependent induction of epidermally expressed HSP70, peaking between one to three days post-treatment. In contrast, none of the various LED treatments up-regulated the HSP70 expression in our skin explant model. HSP70 is up-regulated by nonablative but thermal laser devices, but does not seem to play a significant role in the induction of skin remodeling induced by photomodulation. The maximum of HSP70 expression is reached later after Er:glass laser intervention compared to ablative fractional (AFP) treatment.
Collapse
Affiliation(s)
- Doris Helbig
- University of Leipzig, Department for Dermatology, Venerology and Allergology, Philipp-Rosenthal-Str. 23, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
23
|
Matsuda M, Hoshino T, Yamashita Y, Tanaka KI, Maji D, Sato K, Adachi H, Sobue G, Ihn H, Funasaka Y, Mizushima T. Prevention of UVB radiation-induced epidermal damage by expression of heat shock protein 70. J Biol Chem 2009; 285:5848-58. [PMID: 20018843 DOI: 10.1074/jbc.m109.063453] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-kappaB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IkappaB-alpha (an inhibitor of NF-kappaB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IkappaB-alpha in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2'-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects.
Collapse
Affiliation(s)
- Minoru Matsuda
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Prevention of the ultraviolet effects on clinical and histopathological changes, as well as the heat shock protein-70 expression in mouse skin by topical application of algal UV-absorbing compounds. J Dermatol Sci 2009; 55:161-9. [DOI: 10.1016/j.jdermsci.2009.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 05/20/2009] [Accepted: 06/02/2009] [Indexed: 11/21/2022]
|
25
|
Yusuf N, Nasti TH, Huang CM, Huber BS, Jaleel T, Lin HY, Xu H, Elmets CA. Heat shock proteins HSP27 and HSP70 are present in the skin and are important mediators of allergic contact hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2009; 182:675-83. [PMID: 19109201 DOI: 10.4049/jimmunol.182.1.675] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proteomic analysis of murine skin has shown that a variety of heat shock proteins (HSPs) are constitutively expressed in the skin. Using murine allergic contact hypersensitivity as a model, we investigated the role of two heat shock proteins, HSP27 and HSP70, in the induction of cutaneous cell-mediated immune responses. Immunohistochemical examination of skin specimens showed that HSP27 was present in the epidermis and HSP70 was present in both the epidermis and dermis. Inhibition of HSP27 and HSP70 produced a reduction in the 1-fluoro-2,4-dinitrobenzene contact hypersensitivity response and resulted in the induction of Ag-specific unresponsiveness. Treatment of dendritic cell cultures with recombinant HSP27 caused in the up-regulation of IL-1beta, TNF-alpha, IL-6, IL-12p70, and IL-12p40 but not IL-23p19, which was inhibited when Abs to HSP27 were added. The 1-fluoro-2,4-dinitrobenzene-conjugated dendritic cells that had been treated with HSP27 had an increased capacity to initiate contact hypersensitivity responses compared with control dendritic cells. This augmented capacity required TLR4 signaling because neither cytokine production by dendritic cells nor the increased induction of contact hypersensitivity responses occurred in TLR4-deficient C3H/HeJ mice. Our findings indicate that a cascade of events occurs following initial interaction of hapten with the skin that includes increased activity of HSPs, their interaction with TLR4, and, in turn, increased production of cytokines that are known to enhance Ag presentation by T cells. The results suggest that HSPs form a link between adaptive and innate immunity during the early stages of contact hypersensitivity.
Collapse
Affiliation(s)
- Nabiha Yusuf
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sedlackova L, Nguyen TTH, Zlacka D, Sosna A, Hromadnikova I. Cell surface and relative mRNA expression of heat shock protein 70 in human synovial cells. Autoimmunity 2009; 42:17-24. [PMID: 18608178 DOI: 10.1080/08916930802227466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
UNLABELLED Heat shock proteins (Hsps) have been repeatedly implicated to participate in the pathogenesis of rheumatoid arthritis (RA). METHODS Herein, Hsp70 cell surface and mRNA expression were studied in human fibroblast-like synovial cells, dermal fibroblasts and peripheral blood leukocytes derived from 24 RA patients, who underwent synovectomy by using flow-cytometric analysis and real-time quantitative reverse-transcriptase polymerase chain reaction. For comparison, peripheral blood leukocytes of 17 healthy controls were tested. RESULTS Significantly higher Hsp70 membrane positivity was found on fibroblast-like synovial cells in RA patients (average 18.3%, median 16.5%) than on autologous and healthy control peripheral blood lymphocytes (RA patients: average 4.7%, median 2.9%, p = 0.002; healthy controls: average 6.0%, median 4.5%, p = 0.002) and/or autologous dermal fibroblasts (average 5.1%, median 4.3%, p < 0.001). Strong Hsp70 cell surface expression was also found on peripheral blood monocytes of RA patients (average 53.0%, median 58.1%) and healthy controls (average 49.4%, median 47.5%, p = 0.52). Peripheral blood granulocytes of healthy controls (average 41.8%, median 41.4%) showed significantly increased Hsp70 expression comparing with RA patients (average 10.7%, median 6.4%, p = 0.005). Significantly higher Hsp70 gene expression was observed in synovial cells of RA patients (average 2.04, median 1.7) when compared with autologous peripheral blood leukocytes (average 0.75, median 0.68; p < 0.001). However, the difference in Hsp70 gene expression between RA-derived synovial cells and healthy control peripheral blood leukocytes (average 1.69, median 1.64) was not observed (p = 0.83). We also found significantly lower relative gene expression in peripheral blood leukocytes of RA patients in comparison with healthy controls (p < 0.001). Interestingly, we found that Hsp70 gene expression in RA non-affected skin dermis gained from the operation wound was 3.7-fold higher in average (average 7.6, median 8.3) when compared to autologous RA-affected synovial tissue (p < 0.001); 10.1-fold higher in average when compared to autologous peripheral blood leukocytes (p < 0.001) and 4.5-fold higher in average comparing to control peripheral blood leukocytes (p < 0.001). CONCLUSION Hsp70 gene expression in RA-affected synovial tissue is followed by Hsp70 cell surface expression on fibroblast-like synovial cells growing from RA synovial tissue. Hsp70 may be translocated to the cell surface from the cytosol and/or Hsp70 released from inflamed synovial tissue may be captured onto the membrane of synovial cells from the extracellular space via Hsp receptors. As a physiological response to potentially harmful enviromental stress factors, skin dermis produces higher levels of Hsp70 comparing to the cells of internal organs and tissues.
Collapse
Affiliation(s)
- Lucie Sedlackova
- Department of Molecular Biology and Cell Pathology, 3rd Medical Faculty, Charles University, Czech Republic.
| | | | | | | | | |
Collapse
|
27
|
Roh BH, Kim DH, Cho MK, Park YL, Whang KU. Expression of Heat Shock Protein 70 in Human Skin Cells as a Photoprotective Function after UV Exposure. Ann Dermatol 2008; 20:184-9. [PMID: 27303188 DOI: 10.5021/ad.2008.20.4.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/11/2008] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Human skin is exposed to various environmental stresses, such as heat, cold, and ultraviolet (UV) radiation. Heat shock proteins (HSPs) induced by temperature elevations, as a physiologic response to mediate repair mechanisms and reduce cellular damage. OBJECTIVE The purpose of this study was to investigate the induction of HSPs in human skin cells after UV exposure. METHODS We performed immunoblotting using a specific monoclonal antibody to the HSP70 family, one of the best-conserved stress proteins in humans, with cultured normal human keratinocytes, A431 cells, human melanocytes, SK30 cells, and human dermal fibroblasts (HDF). RESULTS Our results indicated that high expression of HSP70 in the unstressed state was noted in epidermal cells, including normal human keratinocytes, A431 cells, human melanocytes, and SK30 cells, but epidermal cells showed no additional up-regulation of HSP70 after UV irradiation. On the other hand, HDF expressed very small amounts of HSP70 at baseline, but significantly higher amounts of HSP70 after UV exposure. CONCLUSION These findings suggest that constitutive expression of HSP70 in epidermal cells may be an important mechanism for protection of the human epidermis from environmental stresses, such as sunlight exposure.
Collapse
Affiliation(s)
- Byoung Hwa Roh
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Dae Hyun Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Moon Kyun Cho
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Young Lip Park
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Kyu Uang Whang
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| |
Collapse
|
28
|
Sur R, Lyte PA, Southall MD. Hsp27 regulates pro-inflammatory mediator release in keratinocytes by modulating NF-kappaB signaling. J Invest Dermatol 2007; 128:1116-22. [PMID: 18007587 DOI: 10.1038/sj.jid.5701157] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat-shock protein 27 (Hsp27) is a member of the small Hsp family that functions as molecular chaperones and protects cells against environmental stress. Hsp27 is expressed in the upper epidermal layers of normal human skin and has been reported to play a role in keratinocyte differentiation and apoptosis. In this investigation, we show an additional role of Hsp27 in the regulation of inflammatory pathways in keratinocytes. Downregulation of Hsp27 using Hsp27-specific small interfering RNA increased prostaglandin E(2) (PGE(2)) production in both unstimulated and tumor necrosis factor-alpha (TNF-alpha)-stimulated keratinocytes. Moreover, downregulation of Hsp27 increased the release of the pro-inflammatory cytokine IL-8 from TNF-alpha-stimulated and UV-irradiated keratinocytes, and this increase was inhibited by pretreatment with the NF-kappaB inhibitor BAY11-7082. Further studies showed that downregulation of Hsp27 resulted in induction of NF-kappaB reporter activity in keratinocytes. This correlated with enhanced degradation of IkappaB-alpha protein and accumulation of phosphorylated IkappaB-alpha in Hsp27 knockdown cells. Moreover, Hsp27 associated with the IkappaB kinase (IKK) complex. As synthesis of the pro-inflammatory cytokine IL-8 and the prostanoid PGE(2) are regulated by NF-kappaB, this could be a probable mechanism by which Hsp27 modulates the production of these inflammatory cytokines. Thus, Hsp27 plays a protective role in regulating inflammatory responses in skin.
Collapse
Affiliation(s)
- Runa Sur
- Preclinical Pharmacology, Johnson and Johnson Skin Research Center, CPPW, a Unit of Johnson & Johnson Consumer Companies Inc., Skillman, New Jersey 08558, USA
| | | | | |
Collapse
|
29
|
Sanchez S, Haro E, Ruffié G, Veyret B, Lagroye I. In vitro study of the stress response of human skin cells to GSM-1800 mobile phone signals compared to UVB radiation and heat shock. Radiat Res 2007; 167:572-80. [PMID: 17474794 DOI: 10.1667/rr0802.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/13/2006] [Indexed: 11/03/2022]
Abstract
The evolution of mobile phone technology is toward an increase of the carrier frequency up to 2.45 GHz. Absorption of radiofrequency (RF) radiation becomes more superficial as the frequency increases. This increasingly superficial absorption of RF radiation by the skin, which is the first organ exposed to RF radiation, may lead to stress responses in skin cells. We thus investigated the expression of three heat-shock proteins (HSP70, HSC70, HSP27) using immunohistochemistry and induction of apoptosis by flow cytometry on human primary keratinocytes and fibroblasts. A well-characterized exposure system, SXC 1800, built by the IT'IS foundation was used at 1800 MHz, with a 217 Hz modulation. We tested a 48-h exposure at an SAR of 2 W/kg (ICNIRP local exposure limit). Skin cells were also irradiated with a 600 mJ/cm2 single dose of UVB radiation and subjected to heat shock (45 degrees C, 20 min) as positive controls for apoptosis and HSP expression, respectively. The results showed no effect of a 48-h GSM-1800 exposure at 2 W/kg on either keratinocytes or fibroblasts, in contrast to UVB-radiation or heat-shock treatments, which injured cells. We thus conclude that the GSM-1800 signal does not act as a stress factor on human primary skin cells in vitro.
Collapse
Affiliation(s)
- S Sanchez
- University of Bordeaux 1, IMS Laboratory, UMR 5218 CNRS, EPHE Bioelectromagnetics Group, Pessac, France.
| | | | | | | | | |
Collapse
|
30
|
Bayerl C, Jung EG. Microinjection of an antibody against HSP 72 in keratinocytes to study acute UV injury⊃. Exp Dermatol 2007. [DOI: 10.1111/j.1600-0625.1999.tb00378.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Brown SA, Farkas JP, Arnold C, Hatef DA, Kim J, Hoopman J, Kenkel JM. Heat shock proteins 47 and 70 expression in rodent skin model as a function of contact cooling temperature: Are we overcooling our target? Lasers Surg Med 2007; 39:504-12. [PMID: 17659589 DOI: 10.1002/lsm.20517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES The degree of protective cooling required during laser therapy to achieve an optimal result is unknown. The expression of heat shock proteins, Hsp47 and Hsp70, were examined in the epidermis and dermis as biomarkers to quantify the degree and depth of tissue affected by non-ablative laser treatment using variable protective cooling parameters. STUDY DESIGN/MATERIALS AND METHODS Twenty-one male Sprague-Dawley rats were treated with a 1,319 nm Nd:YAG laser using a sapphire cooling plate attached to the hand piece. A 4 cmx4 cm area on each side of the rat was treated with the same energy and pulse settings, with variable contact cooling. Protective cooling parameters, for each degree increment, ranging from 0 to 25 degrees C were studied. Immunohistochemistry (IHC), Western blot and PCR were performed to evaluate the effects of superficial cooling on Hsp47, and Hsp70 expressions. RESULTS Our data showed the extent of topical cooling needed to produce a thermal effect at different depths in the dermis, quantified by the expression of Hsp47 and Hsp70. Significant Hsp expression was observed with cooling of 13 degrees C and warmer; no identifiable cellular reaction was observed when cooling below 5 degrees C. There was no evidence of epidermal injury when treating the skin with any protective cooling ranging from 0 to 25 degrees C. CONCLUSION Our data would suggest contact cooling temperatures 5 degrees C and below completely protects through the entire dermis. There was no evidence of epidermal injury with protective cooling at any temperature between 0 and 25 degrees C. Warmer temperatures are safe and adequately protect the epidermis in this model.
Collapse
Affiliation(s)
- Spencer A Brown
- Department of Plastic Surgery, Clinical Center for Cosmetic Laser Treatment, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, Texas 75390-8650, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wilmink GJ, Opalenik SR, Beckham JT, Davidson JM, Jansen ED. Assessing laser-tissue damage with bioluminescent imaging. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:041114. [PMID: 16965142 DOI: 10.1117/1.2339012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (lambda=10.6 microm, 0.679 to 2.262 Wcm2, cw, unfocused Gaussian beam, omegaL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 Wcm2 activated the hsp70 response, and a higher irradiance of 2.262 Wcm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and eosin stains verified the presence of the thermally denatured tissue regions. Immunohistochemical analyses confirmed that maximal hsp70 expression occurred at a depth of 150 microm. Bioluminescent microscopy was employed to corroborate these findings. These results indicate that quantitative BLI in engineered tissue equivalents provides a powerful model that enables sequential gene expression studies. Such a model can be used as a high throughput screening platform for laser-tissue interaction studies.
Collapse
Affiliation(s)
- Gerald J Wilmink
- Vanderbilt University, Department of Biomedical Engineering, 5824 Stevenson Center, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
33
|
Carta F, Demuro PP, Zanini C, Santona A, Castiglia D, D'Atri S, Ascierto PA, Napolitano M, Cossu A, Tadolini B, Turrini F, Manca A, Sini MC, Palmieri G, Rozzo AC. Analysis of candidate genes through a proteomics-based approach in primary cell lines from malignant melanomas and their metastases. Melanoma Res 2006; 15:235-44. [PMID: 16034300 DOI: 10.1097/00008390-200508000-00002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Proteomics provides a powerful approach for screening alterations in protein expression and post-translational modification associated with particular human diseases. In this study, the analysis of protein expression was focused on malignant melanoma in order to determine the candidate genes involved in tumour progression. The proteomes of cultured melanocytes and of cell lines from primary and metastatic lesions of one malignant melanoma patient were profiled using two-dimensional electrophoresis (2-DE) and mass spectrometry. Differentially expressed proteins were confirmed by 2-DE and mass spectrometry on an additional four malignant melanoma cell lines. Total RNA from the first subset of cell lines was used for quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) of the candidate genes identified after proteomics analysis. A very high similarity was observed in the 2-DE maps of two malignant melanoma cell lines derived from primary and secondary lesions of the same patient. Mass spectrometry identified 37 proteins which were found to be more abundant in tumour cells in comparison with control melanocytes (as confirmed on additional cell lines), with a relatively high prevalence of stress proteins. Eight candidate genes (PRDX2, HSP27, HSP60, HSPA8, HSP9B, STIP1, PDI and P4HB) were further characterized by evaluating their messenger RNA expression levels through real-time RT-PCR analysis. Overexpression of HSP27, HSP60 and HSPA8 and downregulation of PRDX2 were observed in cells from metastatic malignant melanoma in comparison with those from primary melanoma. Although further investigations with larger numbers of paired normal and tumour samples are needed, our findings strongly suggest that the dysregulation of stress pathways may be involved in melanoma progression.
Collapse
|
34
|
Merwald H, Kokesch C, Klosner G, Matsui M, Trautinger F. Induction of the 72-kilodalton heat shock protein and protection from ultraviolet B-induced cell death in human keratinocytes by repetitive exposure to heat shock or 15-deoxy-delta(12,14)-prostaglandin J2. Cell Stress Chaperones 2006; 11:81-8. [PMID: 16572732 PMCID: PMC1400615 DOI: 10.1379/csc-89r.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been demonstrated that hyperthermia protects keratinocytes from ultraviolet B (UVB)-induced cell death in culture and in vivo. This effect is mediated by the antiapoptotic effect of heat shock proteins that are transiently induced after exposure to heat at sublethal temperatures. Consequently, induction of Hsp has been proposed as a novel means of photoprotection. However, in the face of daily UVB exposure of human skin in vivo, this approach would not be useful if keratinocytes become less sensitive to Hsp induction with repeated exposure to the inducing agent. The aim of this study was to investigate whether repeated exposure to hyperthermia or to the stress protein activating cyclopentenone prostaglandin 15-deoxy-delta(12,14)-prostaglandin J2 (15dPGJ2) leads to adaptation of the cells, attenuation of the heat shock response, and abrogation of the protective effect. Normal human epidermal keratinocytes (NHEK) and the carcinoma-derived cell line A431 were exposed to either 42 degrees C or to 15dPGJ2 for 4 hours at 24-hour intervals for 4 consecutive days. The intracellular level of the 72-kDa heat shock protein (Hsp72) was determined by enzyme-linked immunosorbent assay (ELISA). Cells were exposed to UVB from a metal halide source after the last heat or 15dPGJ2 treatment, and survival was determined 24 hours after exposure by a MTT assay. Our results demonstrate that (1) heat shock and 15dPGJ2 are potent inducers of Hsp72 expression and lead to increased resistance to UVB-induced cell death in human keratinocytes; (2) re-exposure to heat shock leads to a superinduction without attenuation of the absolute increase in Hsp72 and of its UVB-protective effect; (3) the UVB tolerance induced by 15dPGJ2 is enhanced by repeated exposure without a further increase of Hsp72; (4) repeated heat shock and 15dPGJ2 up to a concentration of 1 microg/mL have no influence on cell growth over a period of 4 days. We conclude that through repeated exposure to Hsp-inducing factors, stress tolerance can be maintained without additional toxicity in human keratinocytes. These results provide a basis for the development of nontoxic Hsp inducers that can be repeatedly applied without loss of effect.
Collapse
Affiliation(s)
- Helga Merwald
- Department of Dermatology, Division of Special and Environmental Dermatology, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
35
|
Adly MA, Assaf HA, Hussein MR. Expression of the heat shock protein-27 in the adult human scalp skin and hair follicle: Hair cycle–dependent changes. J Am Acad Dermatol 2006; 54:811-7. [PMID: 16635662 DOI: 10.1016/j.jaad.2005.11.1097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/17/2005] [Accepted: 11/30/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND Heat shock protein (HSP) is a molecular chaperone involved in protein folding, assembly, and transport and in the regulation of cell growth and differentiation. HSP27 protein is expressed in murine hair follicle (HF) and in human skin during fetal development. In this investigation we hypothesized that HSP27 protein is expressed in the human scalp skin and its expression in HF changes with the transitions form anagen --> catagen --> telogen stages. METHODS To test this hypothesis, the immunoreactivity of HSP27 protein was examined in human scalp skin by immunofluorescent method. A total of 50 normal human scalp skin biopsy specimens were examined (healthy women, age 53-57 years). In each case, 50 HF were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). RESULTS HSP27 protein expression was prominent in human scalp anagen, and weak in both catagen and telogen HFs. Within HF, HSP27 protein immunoreactivity was prominent in the outer root sheath, inner root sheath, precorteocytes, and corteocytes of the hair shaft. In addition, HSP27 protein expression was prominent in the epidermis, sebaceous glands, sweat glands, and arrector pili muscles. LIMITATIONS Only some types of heat shock proteins are known to date. Also, our knowledge about the exact molecular mechanisms involved in the interactions among these protein and other molecular chaperones is still incomplete. CONCLUSIONS Our investigation reports, for the first time, the expression patterns of HSP27 in human scalp skin and HF. The differential expression of HSP27 during HF cycling suggests its possible roles in human HF biology.
Collapse
Affiliation(s)
- Mohamed A Adly
- Department of Zoology, Sohâg Faculty of Science, Sohag, Egypt
| | | | | |
Collapse
|
36
|
Evdonin AL, Martynova MG, Bystrova OA, Guzhova IV, Margulis BA, Medvedeva ND. The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur J Cell Biol 2006; 85:443-55. [PMID: 16584808 DOI: 10.1016/j.ejcb.2006.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 02/09/2006] [Accepted: 02/09/2006] [Indexed: 10/24/2022] Open
Abstract
In our earlier work we have demonstrated that the treatment of squamous carcinoma cell line A431 with a pharmacological inhibitor of phospholipase C activity, U73122, resulted in fast release of stress-inducible heat shock protein 70 (Hsp70) into the extracellular medium (Evdonin et al., Cancer Cell Int., 4, 2, 2004). The purpose of the present study was to identify cellular organelles involved in the release of Hsp70 from A431 cells. We determined that Hsp70 is present in granules located at the periphery of cells, which had been treated with U73122 or subjected to heat shock. An inhibitor of the classical protein export pathway, brefeldin A was found to prevent the U73122-induced appearance of Hsp70 in the extracellular medium and in the peripheral granules. These findings suggest that vesicular transport is involved in Hsp70 release. The Hsp70-containing granules did not carry markers specific for lipid bodies, endosomes, or lysosomes. However, they were positive for a marker of secretory granules, i.e. chromogranin A. The levels of extracellular Hsp70 and chromogranin A were found to increase simultaneously. The secretory-like granule-dependent transport of Hsp70 was also studied in minimally transformed human HaCaT keratinocytes. We found that after U73122 and heat stress treatment, HaCaT cells secreted Hsp70 in a manner similar to A431 cells. Collectively our results suggest that human keratinocyte-derived cells release Hsp70 in the extracellular medium through a pathway involving secretory-like granules.
Collapse
Affiliation(s)
- Anton L Evdonin
- Institute of Cytology Russian Academy of Science, Tikhoretsky ave, 4, St. Petersburg 194064, Russian Federation.
| | | | | | | | | | | |
Collapse
|
37
|
Romanucci M, Bongiovanni L, Marruchella G, Marà M, di Guardo G, Preziosi R, della Salda L. Heat shock proteins expression in canine intracutaneous cornifying epithelioma and squamous cell carcinoma. Vet Dermatol 2005; 16:108-16. [PMID: 15842541 DOI: 10.1111/j.1365-3164.2005.00436.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heat shock proteins (HSPs) are strongly implicated in the control of cell growth, differentiation and biological behaviour of many human cutaneous neoplasms. To our knowledge, no data have been published in the veterinary literature concerning either normal or neoplastic skin. In this study, the immunohistochemical expression of Hsp27, Hsp72 and Hsp73 was evaluated in normal canine skin, 14 intracutaneous cornifying epitheliomas (ICE), 10 well-differentiated and 5 moderately differentiated squamous cell carcinomas (SCC). Expression was correlated with the histological degree of keratinocyte differentiation and proliferation, and investigated as to its usefulness in the differential diagnosis of these canine tumours. In normal epidermis, Hsp27 exhibited cytoplasmic labelling in the spinous and granular layers, whereas in neoplastic tissues it was detected particularly in those areas showing squamous differentiation. Hsp72 immunoreactivity was more intense in ICE and well-differentiated SCC than in normal skin; however, reduced immunolabelling was observed in moderately differentiated SCC. Unlike Hsp72, Hsp73 showed less intense labelling in ICE and well-differentiated SCC than in normal epithelium and an increased positivity in moderately differentiated SCC. These results indicate that HSP immunoreactivity differs between normal and neoplastic canine skin. Hsp27 expression seems to correlate directly with cellular differentiation; by contrast, the involvement of Hsp72/73 in proliferation and differentiation of tumour cells remains controversial. The pattern and intensity of immunolabelling of each investigated HSP did not show, however, significant differences between ICE and SCC; therefore, they do not seem to be useful in the differential diagnosis of these two canine tumours.
Collapse
Affiliation(s)
- Mariarita Romanucci
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro, 45-64100 Teramo, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Marruchella G, Di Leonardo M, Di Guardo G, Romanucci M, Marà M, G Tiscar P, Mosca F, Della Salda L. Heat Shock Proteins (HSPs) 27, 72 and 73 in Normal and Pre-ulcerative Mucosa of the Gastric Pars Oesophagea in Swine. J Comp Pathol 2004; 131:10-7. [PMID: 15144795 DOI: 10.1016/j.jcpa.2003.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 12/19/2003] [Indexed: 01/23/2023]
Abstract
Heat shock proteins (HSPs), known to play a key role in cellular homeostasis, may also play a role in the defensive mechanisms of gastric mucosa. By means of appropriate immunohistochemical and immunobiochemical techniques, the expression of HSP27, HSP72 and HSP73 within the epithelium of normal and pre-ulcerative (hyperkeratinized) mucosa of the pars oesophagea of abattoir pigs was assessed. In normal mucosa, HSP72 and HSP73 expression was mainly limited to the basal epithelial cell layer, whereas HSP27 expression was consistently detected within the superficial epithelial cell layers. In hyperkeratinized mucosa, HSP72 and HSP73 immunoreactivity appeared to be more widespread, becoming very intense within epithelial cells affected by hydropic degeneration. Hyperkeratinized mucosa also showed HSP27 immunoreactivity, which was particularly intense in epithelial areas affected by hydropic degeneration. Western blot analysis confirmed HSP27, HSP72 and HSP73 expression in normal and in pre-ulcerative mucosa of the pars oesophagea. Semi-quantitative analysis showed that for all three HSPs the immunoreactivity was more intense in pre-ulcerative mucosa than in normal mucosa. The different expression patterns observed may have functional significance; further studies are needed, however, to define the role of HSPs in swine oesophagogastric lesions, the aetiology and pathogenesis of which are largely unknown.
Collapse
Affiliation(s)
- G Marruchella
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Piazza Aldo Moro, 45-64100 Teramo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND. Phospholipse c inhibitor, u73122, stimulates release of hsp-70 stress protein from A431 human carcinoma cells. Cancer Cell Int 2004; 4:2. [PMID: 14989758 PMCID: PMC385244 DOI: 10.1186/1475-2867-4-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 02/27/2004] [Indexed: 11/30/2022] Open
Abstract
Background Accumulating evidences suggest that Hsp 70, the inducible component of Hsp70 family, might release from a living cell. Here we show that a pharmacological inhibitor of phospholipase C activity U73122 caused a 2–4 fold reduction of an intracellular level of Hsp70 in A431 human carcinoma cells. Results A depletion of Hsp70 under U73122 was a result of the protein release since it was detected in cell culture medium, as was established by immunoprecipitation and precipitation with ATP-agarose. The reduction of Hsp70 level was specifically attributed to the inhibition of PLC, since the non-active inhibitor, U73343, had no effect on Hsp70 level. The PLC-dependent decrease of Hsp70 intracellular level was accompanied by the enhanced sensitivity of A431 cells to the apoptogenic effect of hydrogen peroxide. Here for the first time we demonstrated one of the possibilities for a cell to export Hsp70 in PLC-dependent manner. Conclusion From our data we suggest that phospholipase C inhibition is one of the possible mechanisms of Hsp70 release from cells.
Collapse
|
40
|
Jonak C, Klosner G, Kokesch C, FOdinger D, HOnigsmann H, Trautinger F. Subcorneal colocalization of the small heat shock protein, hsp27, with keratins and proteins of the cornified cell envelope. Br J Dermatol 2002; 147:13-9. [PMID: 12100179 DOI: 10.1046/j.1365-2133.2002.04667.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND hsp27 is a member of the small heat shock protein family. Its expression in epidermal keratinocytes in situ and in tissue culture correlates with differentiation. Experimental evidence points to the fact that hsp27 is a molecular chaperone and is involved in the regulation of cell growth and differentiation. OBJECTIVES To investigate whether epidermal hsp27 through its chaperone function plays a role in the assembly of keratin filaments and the cornified cell envelope. METHODS We performed double staining immunofluorescence and immunogold microscopy on normal human skin (n = 15). We analysed the colocalization of hsp27 with actin, keratins and proteins of the cornified cell envelope (loricrin, filaggrin, transglutaminase 1). RESULTS Actin staining did not reveal detectable colocalization with hsp27. For keratins, transglutaminase, loricrin and filaggrin colocalization was found in more than 60% of the samples. Colocalization was confined to a narrow subcorneal layer with varying patterns of expression. Electron microscopy revealed that loricrin and filaggrin colocalize with hsp27 indirectly through binding to intermediate filaments. CONCLUSIONS These results provide morphological evidence that in normal human skin hsp27 might act as a chaperone of cornification. Investigations of the molecular hsp27 interactions with the proteins of the cornified cell envelope are necessary to gain further insight into terminal keratinocyte differentiation and disorders of keratinization.
Collapse
Affiliation(s)
- C Jonak
- Division of Special and Environmental Dermatology, University of Vienna, Währinger Gürtel 18-20, Austria.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Heat shock proteins are of fundamental importance in cutaneous biology, from protection against UV-induced damage to wound healing and repair. Heat shock proteins have important regulatory roles in the control of apoptosis, regulation of steroid aporeceptors, kinases, and other protein remodelling events. They are also implicated in the control of cell growth, and as such, are potential targets for cancer diagnosis and treatment. Currently, emphasis is being placed on the potential use of these proteins in the prevention and treatment of disease. Therapeutic manipulation of these proteins may ultimately lead to novel treatments for diseases as diverse as melanoma to epidermolysis bullosa.
Collapse
Affiliation(s)
- S D Morris
- St John's Institute of Dermatology, St Thomas' Hospital, Lambeth Palace Road, London, UK.
| |
Collapse
|
42
|
Trautinger F. Heat shock proteins in the photobiology of human skin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 63:70-7. [PMID: 11684453 DOI: 10.1016/s1011-1344(01)00203-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All organisms respond to sudden environmental changes with the increased transcription of genes belonging to the family of heat shock proteins (hsps). Hsp-inducing stress factors include elevated temperatures, alcohol, heavy metals, oxidants, and agents leading to protein denaturation. The induction of heat shock proteins is followed by a transient state of increased resistance to further stress and the heat shock response is generally thought to represent an evolutionary conserved adaptive mechanism to cope with hostile environmental conditions. Since the skin as a barrier organ has to cope with the potentially harmful consequences of exposure to ultraviolet radiation (UV), it appears reasonable to question whether hsps constitute a natural defence mechanism against UV. Hsps have been detected in resting as well as in stressed epidermal and dermal cells and overexpression of hsps is associated with increased resistance to UV-induced cell death. Furthermore, UV itself is able to induce the expression of specific hsps. Thus, hsps might provide an adaptive cellular response to increasing UV and enhancing the expression of hsps might turn out as a new way to deal with the immediate and long-term consequences of UV exposure. Prerequisite for the utilization of this concept is the development of non-toxic heat shock inducers and their evaluation for clinical efficacy and safety.
Collapse
Affiliation(s)
- F Trautinger
- University of Vienna, Division of Special and Environmental Dermatology, Department of Dermatology, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
43
|
Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M. Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 2001; 144:260-6. [PMID: 11251556 DOI: 10.1046/j.1365-2133.2001.04010.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously reported that skin closure is improved by photoirradiation of the wound margins with an 815-nm diode laser system. OBJECTIVES To determine whether the beneficial effects of laser treatment involve the overexpression of the inducible 72-kDa heat shock protein, Hsp70. METHODS Expression of Hsp70 was investigated by immunocytochemistry in normal hairless rat dorsal skin and compared with its expression after laser photoirradiation. RESULTS Constitutive expression of Hsp70 was mainly confined to the upper epidermal layer. Laser irradiation further increased epidermal expression of Hsp70 while inducing de novo synthesis of the protein in dermal structures, particularly around blood vessels, hair follicles and sebaceous glands. Laser-induced expression of Hsp70 was still present 7 days after photoirradiation. CONCLUSIONS Laser-induced expression of Hsp70 might contribute to improved tissue regeneration and wound healing.
Collapse
Affiliation(s)
- E Souil
- Laboratoire de Physiologie Respiratoire et de Biologie Cellulaire, UFR Cochin Port-Royal, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Ghoreishi M, Yokozeki H, Hua WM, Nishioka K. Expression of 27 KD, 65 KD and 72/73 KD heat shock protein in atopic dermatitis: comparison with those in normal skin and contact dermatitis. J Dermatol 2000; 27:370-9. [PMID: 10920582 DOI: 10.1111/j.1346-8138.2000.tb02186.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The expression of Heat Shock Protein (HPS) 72/73, HSP65 and HSP27 in skin lesions of atopic dermatitis (n = 21) was studied and compared with that in contact dermatitis (n = 18) and normal skin (n = 9). Keratinocytes in the whole epidermis expressed both HSP65 and HSP72/73 with a membranous, cytoplasmic or nuclear/perinuclear staining pattern much more intensely in atopic dermatitis than in contact dermatitis and normal subjects. In approximately half of the subjects with atopic dermatitis, infiltrating cells in the dermis expressed HSP65 and HSP72/73; this was not observed in contact dermatitis. HSP27 was expressed in the upper epidermis with a cytoplasmic or nuclear/perinuclear staining pattern in all groups. HSP27 was not expressed by infiltrating cells. A clinical evaluation of atopic dermatitis showed that more severe types of atopic dermatitis expressed more intense expression of HSP65 and HSP72/73, but not HSP27, in their skin lesions. These findings suggested that HSP65 and HSP72/73 may play roles in the pathogenesis of atopic dermatitis.
Collapse
Affiliation(s)
- M Ghoreishi
- Department of Dermatology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
45
|
Simons JW. A theory on cellular aging and cell immortalization. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 24:1-21. [PMID: 10547856 DOI: 10.1007/978-3-662-06227-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J W Simons
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University, The Netherlands
| |
Collapse
|
46
|
Trautinger F, Kokesch C, Klosner G, Knobler RM, Kindas-Mügge I. Expression of the 72-kD heat shock protein is induced by ultraviolet A radiation in a human fibrosarcoma cell line. Exp Dermatol 1999; 8:187-92. [PMID: 10389635 DOI: 10.1111/j.1600-0625.1999.tb00369.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The 72-kD heat shock protein (hsp72) belongs to a family of stress inducible proteins (heat shock proteins, hsp) and its expression is associated with increased survival of cells in culture following exposure to ultraviolet radiation (UV). Hsp72 can be induced by a number of stresses, including heat, cold, and toxic chemicals. The purpose of this study was to evaluate whether UV is able to activate transcription of hsp72. The human fibrosarcoma cell line HT1080 was used for these experiments because hsp72 is not detectable in these cells under normal culture conditions. Cells were exposed to UVA and UVB using a solar simulating source and hsp72 was determined in whole cell extracts by immunoblotting. For inhibition of mRNA and protein synthesis cordycepin (20 microg/ml) and cycloheximide (10 microg/ml) were added to the cultures, respectively. UVA-induced lipid peroxidation was inhibited by alpha-tocopherol and butylated hydroxytoluene (BHT). UVA but not UVB induced hsp72 with maximal expression at 40 J/cm2, 8-12 h after exposure. Induction was blocked by cordycepin as well as by cycloheximide indicating that both, mRNA and protein synthesis, are required for UVA-induction of hsp72. Inhibition of cell lipid peroxidation with alpha-tocopherol and BHT had no effect on hsp72 expression. These results suggest that induction of hsp72 is part of an adaptive response mechanism in human cells to UV-related stress.
Collapse
Affiliation(s)
- F Trautinger
- Department of Dermatology, University of Vienna, Austria.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Heat shock proteins are chaperones to construct protein molecules and are widely distributed in prokaryotic and eukaryotic cells. They are also induced by environmental stress to protect cells. Human heat shock proteins cross-react with bacterial heat shock proteins to modulate immune responses to induce autoimmunity. They are involved in the differentiation and growth of neoplastic cells as well as normal cells. They are also involved in various inflammatory skin diseases and in fibrotic process. Heat shock proteins play important roles in the pathogenesis of many skin diseases.
Collapse
Affiliation(s)
- K Nishioka
- Department of Dermatology and Environmental Immunodermatology, Tokyo Medical and Dental University, School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
48
|
Chakraborty AK, Funasaka Y, Pawelek JM, Nagahama M, Ito A, Ichihashi M. Enhanced expression of melanocortin-1 receptor (MC1-R) in normal human keratinocytes during differentiation: evidence for increased expression of POMC peptides near suprabasal layer of epidermis. J Invest Dermatol 1999; 112:853-60. [PMID: 10383729 DOI: 10.1046/j.1523-1747.1999.00608.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunohistochemical staining of human skin specimen showed the stronger localization of proopiomelanocortin peptides near the suprabasal layer of the epidermis, where keratinocytes are mostly differentiated. To test the possibilities of whether the production of proopiomelanocortin peptides or their receptor-binding activity or both is increased during differentiation of keratinocytes, we treated the cells in culture with Ca2+ to induce their differentiation. The production of proopiomelanocortin peptides and its gene expression were not induced significantly, but the binding ability of melanocortin receptor, as well as its gene expression were stimulated by Ca2+. Ultraviolet B irradiation, an inducer of differentiation, stimulated both proopiomelanocortin production and melanocortin receptor expression. These data show that normal human keratinocytes express melanocortin receptor similar to melanocytes, and that it is induced during differentiation.
Collapse
Affiliation(s)
- A K Chakraborty
- Department of Dermatology, Kobe University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Parat MO, Richard MJ, Favier A, Béani JC. Metal chelator NNNNN-tetrakis-(2-pyridymethyl)ethylene diamine inhibits the induction of heat shock protein 70 synthesis by heat in cultured keratinocytes. Biol Trace Elem Res 1998; 65:261-70. [PMID: 9892498 DOI: 10.1007/bf02789101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heat shock protein (HSP) synthesis results from various types of injury, including heat shock (HS) and some oxidants. The intracellular signals leading to HSP synthesis are not yet fully elucidated. We have studied the influence of NNN'N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a metal chelator known to induce cellular zinc and copper deprivation, on resistance to heat and on hsp70 synthesis in HaCaT keratinocytes. TPEN was shown to sensitize HaCaT cells to heat shock. The effect of TPEN was neutralized by equimolar Zn2+. By the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and Western blotting characterization of hsp70, it was shown that cultured HaCaT cells constitutively express the inducible form of hsp70. The application of TPEN alone slightly increases the level of hsp70 but inhibits its induction by HS. This inhibitory effect is related to metal deprivation, because it is eliminated when Cu2+ or Zn2+ ions are supplied together with TPEN. These results suggest that these metals are involved in the expression by keratinocytes of a stress protein which has a protective action against environmental stress.
Collapse
Affiliation(s)
- M O Parat
- Groupe de Recherche sur les Pathologies Oxydatives, CHU Albert Michallon, Grenoble, France
| | | | | | | |
Collapse
|
50
|
Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L. Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 1998; 46:1291-301. [PMID: 9774628 DOI: 10.1177/002215549804601109] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wound healing conditions generate a stressful environment for the cells involved in the regeneration process and are therefore postulated to influence the expression of heat shock proteins (Hsps). We have examined the expression of four Hsps (Hsp27, Hsp60, Hsp70 and Hsp90) and a keratin (keratin 6) by immunohistochemistry during cutaneous wound repair from Day 1 to Day 21 after wounding in the mouse. Hsps were constitutively expressed in normal mouse epidermis and their patterns of expression were modified during the healing process. The changes were not directly linked to the time course of the healing process but rather were dependent on the location of cells in the regenerating epidermis. In the thickened epidermis, Hsp60 was induced in basal and low suprabasal cells, Hsp70 showed a reduced expression, and Hsp90 and Hsp27 preserved a suprabasal pattern with an induction in basal and low suprabasal cells. All Hsps had a uniform pattern of expression in the migrating epithelial tongue. These observations suggest that the expression of Hsps in the neoepidermis is related to the proliferation, the migration, and the differentiation states of keratinocytes within the wound.
Collapse
Affiliation(s)
- A F Laplante
- LOEX, Hôpital du Saint-Sacrement, Québec, PQ, Canada
| | | | | | | | | | | | | | | |
Collapse
|