1
|
Hashempour-baltork F, Mirza Alizadeh A, Taghizadeh M, Hosseini H. Cold plasma technology: A cutting-edge approach for enhancing shrimp preservation. Heliyon 2024; 10:e40460. [PMID: 39669143 PMCID: PMC11636109 DOI: 10.1016/j.heliyon.2024.e40460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Cold plasma (CP) is an emerging technology employed to safeguard highly perishable food items, particularly aquatic products such as shrimp. Due to its significant amount of moisture, superior protein composition that contains important amino acids, and unsaturated fatty acid content, shrimp are susceptible to microbial deterioration and overall alterations in their physical and chemical characteristics. Such spoilage not only diminishes the nutritional value of shrimp but also has the potential to generate harmful substances, rendering it unsuitable for consumption. Recent observations have indicated a growing market demand for shrimp that maintains its quality and has a prolonged shelf life. Furthermore, there is a significant emphasis on the production of food items that undergo minimal processing or nonthermal preservation methods. Extensive documentation exists regarding the efficacy of CP technology in eliminating microorganisms from shrimp without inducing resistance or activating enzymes that contribute to shrimp spoilage. Therefore, CP can be mentioned as a slight processing interference to preserve shrimp quality. This chapter primarily explores the principles and methods of CP technology, as well as its impact on melanosis, physicochemical changes, microbial and sensory properties, and the preservation of shrimp quality.
Collapse
Affiliation(s)
- Fataneh Hashempour-baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansoureh Taghizadeh
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yanclo LA, Belay ZA, Mpahleni B, October F, Caleb OJ. Investigation of the impact of cold plasma pretreatments, long term storage and drying on physicochemical properties, bioactive contents and microbial quality of 'Keitt' mango. Heliyon 2024; 10:e40204. [PMID: 39584122 PMCID: PMC11583713 DOI: 10.1016/j.heliyon.2024.e40204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
There is heightened demand for dried mango fruits with desired nutritional and physicochemical qualities, microbiologically stable and chemical residue free. This has led to the exploration of innovative preservation technologies for the extension of storability prior to processing. This study investigated the impact of cold plasma (CP) treatment on physicochemical properties and microbial stability in fresh and dried 'Keitt' mango during long term storage. Freshly harvested 'Keitt' mangoes were subjected to: CP treatment (for 5 min (CP5) and 10 min, CP10), dipping in "Chronos Prochloraz" for 30 s (industry practice), and untreated group (control). All samples were stored at 11 °C for 30 days, prior to minimal processing and hot air drying at 60 °C. Results after 30 days of storage demonstrated that untreated samples (control) had the highest TSS (15.06 ± 0.32 °Brix), while CP10 pretreated samples had the lowest TSS (13.80 ± 0.06 °Brix) value (p ≤ 0.05). In comparison to the fresh samples post storage, all pretreated dried mango slices retained lower total flavanols with CP5 (13.49 ± 1.64 mg GAE 100/g), CP10 (20.12 ± 1.42 mg GAE 100/g) and SMB (23.89 ± 3.35 mg GAE 100/g), but higher than the dried untreated samples (6.68 ± 0.53 mg GAE 100/g). Yellowness (b∗) of the fresh pulp (38.53 ± 1.73) increased significantly (p ≤ 0.05) with the long-term storage (39.88-46.74) and drying (55.01-64.90). CP pre-treatment combined with drying resulted in ≥2 Log reduction in microbial count. This study shows the potential of cold plasma as a pretreatment for extending storability and maintaining the quality of 'Keitt' mangoes.
Collapse
Affiliation(s)
- Loriane A. Yanclo
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| | - Zinash A. Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Buhle Mpahleni
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Feroza October
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Oluwafemi James Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch, 7600, South Africa
| |
Collapse
|
3
|
Deng J, Bolgazy A, Wang X, Zhang M, Yang Y, Jiang H. The properties of potato starch with different moisture content treated by cold plasma:Structure, physicochemical and digestive properties. Int J Biol Macromol 2024; 282:137541. [PMID: 39532173 DOI: 10.1016/j.ijbiomac.2024.137541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
To investigate the effect and mechanism of water on the structure, physicochemical properties, and in vitro digestibility of starch treated with CP, different moisture content (16.7 %, 28.6 %, 37.5 %, 44.4 %, and 50 %, w/w) were used, followed by treatment with CP (40 V, 1 A, 3 mins). Results show that CP treatment preserves the Maltese cross pattern, crystal morphology, and Fourier transform infrared spectroscopy spectra of potato starch. However, significant changes were observed in molecular weight, chain length distribution, average particle size, ordered structure, and relative crystallinity. As moisture content increased, the etching effect on the particle surface intensified, leading to further reductions in molecular weight and ordered structure. Concurrently, amylose content, solubility, relative crystallinity, and resistant starch content increased. At higher water levels, water molecules exhibited protective effects, mitigating CP-induced structural damage by reducing etching and loss of molecular weight. These findings suggest that the role of water in CP treatment is complex and provide insights into the interaction between CP and water in starch properties, highlighting its potential applications in starch-based foods.
Collapse
Affiliation(s)
- Jishuang Deng
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Aiym Bolgazy
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Xinxin Wang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Yang Yang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China
| | - Hao Jiang
- College of Food Science and Engineering, Northwest A & F University, Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, China.
| |
Collapse
|
4
|
Mahmood N, Muhoza B, Huang Y, Munir Z, Zhang Y, Zhang S, Li Y. Effects of emerging food pretreatment and drying techniques on protein structures, functional and nutritional properties: An updated review. Crit Rev Food Sci Nutr 2024; 64:9365-9381. [PMID: 37377348 DOI: 10.1080/10408398.2023.2212302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Protein is one of the most important components of food which significantly contributes to the structure, functionality, and sensory properties which may affect consumer acceptability of processed products. Conventional thermal processing affects protein structure and induce undesirable degradation of food quality. This review provides an overview of emerging pretreatment and drying technologies (plasma treatment, ultrasound treatment, electrohydrodynamic, radio frequency, microwave, and superheated steam drying) in food processing by assessing protein structural changes to enhance functional and nutritional properties. In addition, mechanisms and principles of these modern technologies are described while challenges and opportunities for the development of these techniques in the drying process are also critically analyzed. Plasma discharges can lead to oxidative reactions and cross-linking of proteins that can change the structure of proteins. Microwave heating contributes to the occurrence of isopeptide or disulfide bonds which promotes α-helix and β-turn formation. These emerging technologies can be adopted to improve protein surface by exposing more hydrophobic groups which restrict water interaction. It is expected that these innovative processing technologies should become a preferred choice in the food industry for better food quality. Moreover, there are some limitations for industrial scale application of these emerging technologies that need to be addressed.
Collapse
Affiliation(s)
- Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zeeshan Munir
- Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Seyedalangi M, Sari AH, Nowruzi B, Anvar SAA. The synergistic effect of dielectric barrier discharge plasma and phycocyanin on shelf life of Oncorhynchus mykiss rainbow fillets. Sci Rep 2024; 14:9174. [PMID: 38649495 PMCID: PMC11035654 DOI: 10.1038/s41598-024-59904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to evaluate the efficacy of dielectric barrier discharge treatment (DBD) combined with phycocyanin pigment (PC) in extending the shelf life of Oncorhynchus mykiss rainbow fillets stored at 4 ± 0.1 °C. Microbiological, physicochemical, sensory and antioxidant properties were assessed over an 18-day storage period. The combined DBD and PC treatment significantly inhibited total viable counts and Psychrotrophic bacteria counts compared to the rest of the samples throughout storage. While Total Volatile Nitrogen concentrations remained below international standard until day 18, they exceeded this threshold in control sample by day 9. DBD treatment notably reduced Trimethylamine levels compared to controls (p < 0.05). PC and DBD combined inhibited DPPH and ABTS radical scavenging capacities by 80% and 85%, respectively, while demonstrating heightened iron-reducing antioxidant activity compared to controls. Analysis of 24 fatty acids indicated that PC mitigated DBD's adverse effects, yielding superior outcomes compared to controls. The ratio of n-3 to n-6 fatty acids in all samples met or fell below international standard. Thus, the combined use of DBD and PC shows promise in extending fillet shelf life by over 15 days at 4 °C.
Collapse
Affiliation(s)
- Maedehsadat Seyedalangi
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Kulišová M, Rabochová M, Lorinčík J, Brányik T, Hrudka J, Scholtz V, Jarošová Kolouchová I. Exploring Non-Thermal Plasma and UV Radiation as Biofilm Control Strategies against Foodborne Filamentous Fungal Contaminants. Foods 2024; 13:1054. [PMID: 38611358 PMCID: PMC11011738 DOI: 10.3390/foods13071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, non-thermal plasma (NTP) has emerged as a promising tool for decontamination and disinfection within the food industry. Given the increasing resistance of microbial biofilms to conventional disinfectants and their adverse environmental effects, this method has significant potential for eliminating biofilm formation or mitigating the metabolic activity of grown biofilms. A comparative study was conducted evaluating the efficacy of UV radiation and NTP in eradicating mature biofilms of four common foodborne filamentous fungal contaminants: Alternaria alternata, Aspergillus niger, Fusarium culmorum, and Fusarium graminearum. The findings reveal that while UV radiation exhibits variable efficacy depending on the duration of exposure and fungal species, NTP induces substantial morphological alterations in biofilms, disrupting hyphae, and reducing extracellular polymeric substance production, particularly in A. alternata and F. culmorum. Notably, scanning electron microscopy analysis demonstrates significant disruption of the hyphae in NTP-treated biofilms, indicating its ability to penetrate the biofilm matrix, which is a promising outcome for biofilm eradication strategies. The use of NTP could offer a more environmentally friendly and potentially more effective alternative to traditional disinfection methods.
Collapse
Affiliation(s)
- Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Michaela Rabochová
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 272 01 Kladno, Czech Republic
| | - Jan Lorinčík
- Department of Material Analysis, Research Centre Rez, Hlavní 130, 250 68 Husinec-Řež, Czech Republic; (M.R.); (J.L.)
| | - Tomáš Brányik
- Research Institute of Brewing and Malting, Lípová 15, 120 44 Prague, Czech Republic;
| | - Jan Hrudka
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Vladimír Scholtz
- Department of Physics and Measurements, Prague, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic; (J.H.); (V.S.)
| | - Irena Jarošová Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| |
Collapse
|
7
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
8
|
Kaavya R, Rajasekaran B, Shah K, Nickhil C, Palanisamy S, Palamae S, Chandra Khanashyam A, Pandiselvam R, Benjakul S, Thorakattu P, Ramesh B, Aurum FS, Babu KS, Rustagi S, Ramniwas S. Radical species generating technologies for decontamination of Listeria species in food: a recent review report. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38380625 DOI: 10.1080/10408398.2024.2316295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.
Collapse
Affiliation(s)
| | - Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Suguna Palanisamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - R Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Priyamavada Thorakattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS, USA
| | - Bharathi Ramesh
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - Fawzan Sigma Aurum
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
9
|
Du Y, Mi S, Wang H, Yuan S, Yang F, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Intervention mechanisms of cold plasma pretreatment on the quality, antioxidants and reactive oxygen metabolism of fresh wolfberries during storage. Food Chem 2024; 431:137106. [PMID: 37573747 DOI: 10.1016/j.foodchem.2023.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Fresh wolfberries, a nutritious "super fruit", face limited marketing potential due to storage difficulties. This study aimed to enhance their storage stability using dielectric barrier discharge plasma (DBD) pretreatment and investigate the intervention mechanism. The results indicated that the optimal condition of DBD pretreatment for fresh wolfberries was 13.64 kV, 70 s and 2.7 kHz, which extended their shelf from 2 to 5 d at room temperature. This pretreatment reduced decay, weight loss, and firmness reduction by inactivating microorganisms and inhibiting respiration. Additionally, the decline of phenols, flavonoids, ascorbic acid, and antioxidant activity was inhibited, while maintaining high content of polysaccharides, titratable acid, and carotenoids. Interestingly, moderate DBD treatment produced reactive oxygen species (ROS) that triggered the defense response of wolfberries' ROS metabolism system and promoted the biosynthesis of flavonoids, thereby enhancing resistance to decay. The findings offer new insight into plasma effects on fruits and vegetables.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shuna Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Huihui Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
Chemat A, Song M, Li Y, Fabiano-Tixier AS. Shade of Innovative Food Processing Techniques: Potential Inducing Factors of Lipid Oxidation. Molecules 2023; 28:8138. [PMID: 38138626 PMCID: PMC10745320 DOI: 10.3390/molecules28248138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
With increasing environmental awareness and consumer demand for high-quality food products, industries are strongly required for technical innovations. The use of various emerging techniques in food processing indeed brings many economic and environmental benefits compared to conventional processes. However, lipid oxidation induced by some "innovative" processes is often "an inconvenient truth", which is scarcely mentioned in most studies but should not be ignored for the further improvement and optimization of existing processes. Lipid oxidation poses a risk to consumer health, as a result of the possible ingestion of secondary oxidation products. From this point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly discloses the shade of innovative food processing concerning lipid degradation. Sections involving a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories, and potential lipid oxidation factors from emerging techniques are described, which might help in developing more robust guidelines to ensure a good practice of these innovative food processing techniques in future.
Collapse
Affiliation(s)
- Aziadé Chemat
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| | - Mengna Song
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ying Li
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France
| |
Collapse
|
11
|
Lau S, Wiedmann M, Adalja A. Economic and environmental analysis of processing plant interventions to reduce fluid milk waste. J Dairy Sci 2023:S0022-0302(23)00308-9. [PMID: 37268573 DOI: 10.3168/jds.2022-23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 06/04/2023]
Abstract
With the increased awareness about the economic and environmental impact of food waste, many interventions along food supply chains have been proposed to mitigate food waste. Even though interventions used to target food waste usually revolve around logistics and operations management, we highlight a unique solution to address this issue, specifically for fluid milk. We target the intrinsic quality of fluid milk by evaluating interventions that will extend the product shelf life. We used data from a previous fluid milk spoilage simulation model, collected price and product information from retail stores, conducted an expert elicitation, and used hedonic price regressions to determine the private and social gains to the dairy processing plant when implementing 5 different interventions to extend shelf life. Our data suggest that the value of each additional day of shelf life is approximately $0.03 and indicate that increasing periodic equipment cleaning is the most cost-effective strategy for processing plants to achieve fluid milk shelf-life improvements, both from a firm's economic standpoint and from an environmental standpoint. Importantly, the approaches reported here will be valuable to help individual firms to generate customized facility and firm specific assessments that identify the most appropriate strategies for extending the shelf life of different dairy products.
Collapse
Affiliation(s)
- S Lau
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - A Adalja
- Nolan School of Hotel Administration, SC Johnson College of Business, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
12
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
13
|
Faizal FA, Ahmad NH, Yaacob JS, Abdul Halim Lim S, Abd Rahim MH. Food processing to reduce antinutrients in plant-based foods. INTERNATIONAL FOOD RESEARCH JOURNAL 2023; 30:25-45. [DOI: 10.47836/ifrj.30.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Antinutrients such as phytic acids, tannins, saponin, and enzyme inhibitors are phytochemicals that can decrease the bioavailability of micro- and macronutrients, thus causing them to be unavailable for absorptions in the digestive system. Antinutrients are a major concern especially in countries where plant-based commodities such as wheat, legumes, and cereals are staple foods, for the antinutrients can cause not only mineral deficiencies, but also lead to more serious health issues. Although various thermal and non-thermal processing methods such as cooking, boiling, and fermentation processes have been practiced to decrease the level of antinutrients, these processes may also undesirably influence the final products. More advanced practices, such as ozonation and cold plasma processing (CPP), have been applied to decrease the antinutrients without majorly affecting the physicochemical and nutritional aspects of the commodities post-processing. This review will cover the types of antinutrients that are commonly found in plants, and the available processing methods that can be used, either singly or in combination, to significantly decrease the antinutrients, thus rendering the foods safe for consumption.
Collapse
|
14
|
Zhu H, Cheng JH, Ma J, Sun DW. Deconstruction of pineapple peel cellulose based on Fe2+ assisted cold plasma pretreatment for cellulose nanofibrils preparation. Food Chem 2023; 401:134116. [DOI: 10.1016/j.foodchem.2022.134116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
|
15
|
Cheng JH, Zou S, Ma J, Sun DW. Toxic reactive oxygen species stresses for reconfiguring central carbon metabolic fluxes in foodborne bacteria: Sources, mechanisms and pathways. Crit Rev Food Sci Nutr 2023; 63:1806-1821. [PMID: 36688292 DOI: 10.1080/10408398.2023.2169245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The toxic reactive oxygen species (toxROS) is the reactive oxygen species (ROS) beyond the normal concentration of cells, which has inactivation and disinfection effects on foodborne bacteria. However, foodborne bacteria can adapt and survive by physicochemical regulation of antioxidant systems, especially through central carbon metabolism (CCM), which is a significant concern for food safety. It is thus necessary to study the antioxidant regulation mechanisms of CCM in foodborne bacteria under toxROS stresses. Therefore, the purpose of this review is to provide an update and comprehensive overview of the reconfiguration of CCM fluxes in foodborne bacteria that respond to different toxROS stresses. In this review, two key types of toxROS including exogenous toxROS (exo-toxROS) and endogenous toxROS (endo-toxROS) are introduced. Exo-toxROS are produced by disinfectants, such as H2O2 and HOCl, or during food non-thermal processing such as ultraviolet (UV/UVA), cold plasma (CP), ozone (O3), electrolyzed water (EW), pulsed electric field (PEF), pulsed light (PL), and electron beam (EB) processing. Endo-toxROS are generated by bioreagents such as antibiotics (aminoglycosides, quinolones, and β-lactams). Three main pathways for CCM in foodborne bacteria under the toxROS stress are also highlighted, which are glycolysis (EMP), pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA). In addition, energy metabolisms throughout these pathways are discussed. Finally, challenges and future work in this area are suggested. It is hoped that this review should be beneficial in providing insights for future research on bacterial antioxidant CCM defence under both exo-toxROS stresses and endo-toxROS stresses.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Sang Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
16
|
Wang FQ, Cheng JH, Keener KM. Changing the IgE Binding Capacity of Tropomyosin in Shrimp through Structural Modification Induced by Cold Plasma and Glycation Treatment. Foods 2023; 12:foods12010206. [PMID: 36613421 PMCID: PMC9819036 DOI: 10.3390/foods12010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Tropomyosin (TM) is the major allergen of shrimp (Penaeus chinensis). Previous studies showed that separate cold plasma or glycation have their drawback in reducing allergenicity of TM, including effectiveness and reliability. In the current study, a new processing combining cold plasma (CP) and glycation was proposed and its effect on changing IgE binding capacity of TM from shrimp was investigated. Obtained results showed the IgE binding capacity of TM was reduced by up to 40% after CP (dielectric barrier discharge, 60 kV, 1.0 A) combined with glycation treatment (4 h, 80 °C), compared with the less than 5% reduction after single CP or glycation treatment. Notably, in contrast to the general way of CP prompting glycation, this study devised a new mode of glycation with ribose after CP pretreatment. The structural changes of TM were explored to explain the decreased IgE binding reactivity. The results of multi-spectroscopies showed that the secondary and tertiary structures of TM were further destroyed after combined treatment, including the transformation of 50% α-helix to β-sheet and random coils, the modification and exposure of aromatic amino acids, and the increase of surface hydrophobicity. The morphology analysis using atomic force microscope revealed that the combined processing made the distribution of TM particles tend to disperse circularly, while it would aggregate after either processing treatment alone. These findings confirmed the unfolding and reaggregation of TM during combined processing treatment, which may result in the remarkable reduction of IgE binding ability. Therefore, the processing of CP pretreatment combined with glycation has the potential to reduce or even eliminate the allergenicity of seafood.
Collapse
Affiliation(s)
- Feng-Qi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Correspondence:
| | - Kevin M. Keener
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
17
|
Wang J, Cheng JH, Sun DW. Enhancement of Wheat Seed Germination, Seedling Growth and Nutritional Properties of Wheat Plantlet Juice by Plasma Activated Water. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:2006-2022. [PMID: 35668726 PMCID: PMC9152647 DOI: 10.1007/s00344-022-10677-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
UNLABELLED Previous studies have shown the great potential of using plasma-activated water (PAW) on improving agriculture seed germination, however, information on the influence of PAW on crop plantlet juice remains scanty. In this research, the effect of PAW generated by atmosphere pressure Ar-O2 plasma jet for 1-5 min on wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice was investigated. Results revealed that all PAWs could enhance wheat seed germination and seedling growth in 7 days by improving the germination rate, germination index, fresh weight, dry weight and vigour index, and especially that PAW activated for 3 min (PAW-3) showed the best overall performance. In addition, the application of PAWs enhanced the nutritional properties of wheat plantlet juice from those grown for 14 days by improving total soluble solids, protein content, photosynthetic pigments, total phenolic content, antioxidant activity, enzyme activity, free amino acids and minerals content, and the best enhancement was also observed in PAW-3. It was concluded that PAWs would be an effective technique to enhance the growth and nutritional properties of crop sprouts, which could be served as functional foods in many forms. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00344-022-10677-3.
Collapse
Affiliation(s)
- Junhong Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641 China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006 China
- Engineering and Technological Research Centre of Guangdong Province On Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, 510006 China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Production, characterization, microbial inhibition, and in vivo toxicity of cold atmospheric plasma activated water. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Application of plasma-activated water in the food industry: A review of recent research developments. Food Chem 2022; 405:134797. [DOI: 10.1016/j.foodchem.2022.134797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
|
21
|
Evaluation of storage quality of vacuum-packaged silver Pomfret (Pampus argenteus) treated with combined ultrasound and plasma functionalized liquids hurdle technology. Food Chem 2022; 391:133237. [DOI: 10.1016/j.foodchem.2022.133237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
|
22
|
Pan Y, Cheng J, Sun D. Oxidative lesions and post-treatment viability attenuation of listeria monocytogenes triggered by atmospheric non-thermal plasma. J Appl Microbiol 2022; 133:2348-2360. [PMID: 35751464 PMCID: PMC9805074 DOI: 10.1111/jam.15688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023]
Abstract
AIMS The aim of the current study was to investigate the effect of plasma-mediated oxidative stress on the post-treatment viability of Listeria monocytogenes at the physiological and molecular levels. METHODS AND RESULTS 107 CFU/ml L. monocytogenes in 10 ml phosphate-buffered saline (PBS) was treated with atmospheric non-thermal plasma for 0, 30, 60, 90 and 120 s respectively. Optical diagnostics using optical emission spectroscopy (OES) confirmed that dielectric barrier discharge (DBD) plasma was a significant source of ample exogenous reactive oxygen and nitrogen species (RONS). The development of extracellular main long-lived species was associated with plasma exposure time, accompanied by a massive accumulation of intracellular ROS in L. monocytogenes (p < 0.01). With the exception of virulence genes (hly), most oxidation resistance genes (e.g. sigB, perR, lmo2344, lmo2770 and trxA) and DNA repair gene (recA) were upregulated significantly (p < 0.05). A visible fragmentation in genomic DNA and a decline in the secretion of extracellular proteins and haemolytic activity (p < 0.01) were noticed. The quantitate oxygen consumption rates (OCRs) and extracellular acidification rates (ECARs) confirmed the viability attenuation from the aspect of energy metabolism. Survival assay in a real food system (raw milk) further suggested not only the viability attenuation, but also the resuscitation potential and safety risk of mild plasma-treated cells during post-treatment storage. CONCLUSION DBD plasma had the potential to inactivate and attenuate the virulence of L. monocytogenes, and it was recommended that plasma exposure time longer than 120 s was more suitable for attenuating viability and avoiding the recovery possibility of L. monocytogenes in raw milk within 7 days. SIGNIFICANCE AND IMPACT OF THE STUDY The current results presented a strategy to inactivate and attenuate the viability of L. monocytogenes, which could serve as a theoretical basis for better application of non-thermal plasma in food in an effort to effectively combat foodborne pathogens.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina,Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural ProductsGuangzhou Higher Education Mega CentreGuangzhouChina
| | - Jun‐Hu Cheng
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina,Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural ProductsGuangzhou Higher Education Mega CentreGuangzhouChina
| | - Da‐Wen Sun
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina,Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega CenterGuangzhouChina,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural ProductsGuangzhou Higher Education Mega CentreGuangzhouChina,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science CentreUniversity College Dublin, National University of IrelandDublinIreland
| |
Collapse
|
23
|
Hybridising plasma functionalized water and ultrasound pretreatment for enzymatic protein hydrolysis of Larimichthys polyactis: Parametric screening and optimization. Food Chem 2022; 385:132677. [PMID: 35334341 DOI: 10.1016/j.foodchem.2022.132677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Hybridising plasma functionalized water and ultrasound pretreatment for the enzymatic hydrolysis (HPUEH) of Larimichthys polyactis was evaluated by adopting Plackett-Burman design for parametric screening of six key variables, and Box-Behnken design for optimizing three most significant variables including plasma generating voltage (PV), ultrasound treatment time (UT), and enzyme concentration (EC). The models developed for predicting the degree of hydrolysis (DoH), protein recovery (PVY), and soluble protein content (SPC) were sufficiently fitted to the experimental data (R2 ≥ 0.966) with non-significant lack of fit and used for determining the optimum conditions as PV of 70 V, UT of 15 min, and EC of 1.787%, with predictive values of 27.74%, 85.62%, and 3.28 mg/mL for DoH, PVY, and SPC, respectively. HPUEH presented hydrolysates with smaller peptide sizes and molecular weights, enhanced DoH, PVY, SPC, amino acids and antioxidant activity, but reduced emulsifying and foaming properties when compared with conventional enzymatic hydrolysis.
Collapse
|
24
|
Johnson Esua O, Sun DW, Ajani CK, Cheng JH, Keener KM. Modelling of inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by combining ultrasound with plasma functionalized buffer. ULTRASONICS SONOCHEMISTRY 2022; 88:106086. [PMID: 35830785 PMCID: PMC9287556 DOI: 10.1016/j.ultsonch.2022.106086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Linear (first-order) and non-linear (Weibull, biphasic, and log-logistic) models were evaluated for predicting the inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by a novel technique (UPFB) combining ultrasound (US) with plasma functionalized buffer (PFB). Results showed that UPFB was more effective for inactivating bacteria when compared with individual applications of US or PFB with reductions of 3.92 and 3.70 log CFU/g for Escherichia coli and Listeria monocytogenes, respectively. Compared with the linear model, the three non-linear models presented comparable performances and were more suitable for describing the inactivation kinetics with superior adj-R2 (0.962-0.999), accuracies (0.970-1.006) and bias factors (0.995-1.031), and by assessing the strengths of evidence, weights of evidence and evidence ratios for the models, the biphasic model was identified as the best fit model. The current study provided new insights into the effective evaluation of decontamination methods.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | | |
Collapse
|
25
|
Wu Y, Cheng JH, Sun DW. Subcellular damages of Colletotrichum asianum and inhibition of mango anthracnose by dielectric barrier discharge plasma. Food Chem 2022; 381:132197. [PMID: 35121319 DOI: 10.1016/j.foodchem.2022.132197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
Colletotrichum asianum (C. asianum) is a new pathogenic fungus that causes mango anthracnose. Cold plasma is a novel non-thermal decontamination technology, which has been proven to be effective in controlling postharvest fungus. Herein, dielectric barrier discharge (DBD) plasma was used to treat C. asianum spores in sterile phosphate-buffered saline, the damages in subcellular structures of C. asianum and inhibition of mango anthracnose were evaluated. Results showed that after 9 min treatment, the spore germination rate and spore viability were decreased by 95.48% and 98.82%, respectively, and the subcellular structures were damaged (P < 0.05), leading to spores death. Besides, DBD plasma treatments could control mango anthracnose and maintain mango quality, and the disease incidence and lesion diameter of mango treated for 9 min were decreased by 48.00% and 62.95%, respectively. Therefore DBD plasma inactivated C. asianum spore, providing an alternative technique for preventing and controlling mango anthracnose.
Collapse
Affiliation(s)
- Yue Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
26
|
Recent Advances in Cold Plasma Technology for Food Processing. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Han Z, Zhu H, Cheng JH. Structure modification and property improvement of plant cellulose: Based on emerging and sustainable nonthermal processing technologies. Food Res Int 2022; 156:111300. [PMID: 35651060 DOI: 10.1016/j.foodres.2022.111300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
Cellulose has attracted high attention due to its advantages of abundant resources, renewable and biodegradable. Modification of natural plant cellulose has become a hot topic worldwide. Conventional chemical modification methods commonly cause great damage to the environment. The current review presents the effects of innovative, eco-friendly and sustainable nonthermal processing technologies on cellulose structure and properties. Typical techniques include high pressure processing, cold plasma, ultrasonic and irradiation treatment. Their superiorities in the modification of cellulose are highlighted, and the advantages and limitations of nonthermal processing technologies for plant cellulose modification are also discussed. Nonthermal processing technologies can improve cellulose functional properties by playing an important role in the chemical bonds of the molecular chains, crystalline regions or amorphous parts through energy or active particles generated in the process, or promoting the crosslinking and graft copolymerization of cellulose molecules. The development of modified cellulose functional materials will have wider applications.
Collapse
Affiliation(s)
- Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
28
|
Rahman M, Hasan MS, Islam R, Rana R, Sayem ASM, Sad MAA, Matin A, Raposo A, Zandonadi RP, Han H, Ariza-Montes A, Vega-Muñoz A, Sunny AR. Plasma-Activated Water for Food Safety and Quality: A Review of Recent Developments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6630. [PMID: 35682216 PMCID: PMC9180626 DOI: 10.3390/ijerph19116630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Plasma-activated water (PAW) has received a lot of attention lately because of its antibacterial efficacy and eco-friendly nature. Compared to traditional disinfectants, this novel and intriguing option has a high disinfectant capacity while causing little to no modifications to the foodstuffs. Until now, PAW has successfully demonstrated its effectiveness against a broad range of microorganisms on a wide variety of food items. Though the efficacy of PAW in microbial reduction has been extensively reviewed, a relatively significant issue of food quality has been largely overlooked. This review aims to summarize the current studies on the physicochemical characteristics and antimicrobial potential of PAW, with an in-depth focus on food quality and safety. According to recent studies, PAW can be a potential microbial disinfectant that extends the shelf life of various food products, such as meat and fish products, fruits and vegetables, cereal products, etc. However, the efficacy varies with treatment conditions and the food ingredients applied. There is a mixed opinion about the effect of PAW on food quality. Based on the available literature, it can be concluded that there has been no substantial change in the biochemical properties of most of the tested food products. However, some fruits and vegetables had a higher value for the enzyme superoxide dismutase (SOD) after PAW treatment, while only a few demonstrated a decrease in the Thiobarbituric acid reactive substances (TBARS) value. Sensory properties also showed no significant difference, with some exceptions in meat and fish products.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh; (M.R.); (M.S.H.); (R.I.); (R.R.); (A.S.)
| | - Md. Shariful Hasan
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh; (M.R.); (M.S.H.); (R.I.); (R.R.); (A.S.)
| | - Raihanul Islam
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh; (M.R.); (M.S.H.); (R.I.); (R.R.); (A.S.)
| | - Rahmatuzzaman Rana
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh; (M.R.); (M.S.H.); (R.I.); (R.R.); (A.S.)
| | - ASM Sayem
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh; (M.R.); (M.S.H.); (R.I.); (R.R.); (A.S.)
| | - Md. Abdullah As Sad
- Department of Food Engineering, N P I University of Bangladesh, Manikganj 1800, Bangladesh;
| | - Abdul Matin
- Department of Food Processing and Engineering, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Renata Puppin Zandonadi
- Department of Nutrition, Campus Darcy Ribeiro, University of Brasilia, Asa Norte, Distrito Federal, Brasilia 70910-900, Brazil;
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Korea
| | - Antonio Ariza-Montes
- Social Matters Research Group, Universidad Loyola Andalucía, C/Escritor Castilla Aguayo, 4, 14004 Cordoba, Spain;
| | - Alejandro Vega-Muñoz
- Public Policy Observatory, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| | - Atiqur Rahman Sunny
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh; or
- Suchana Project, WorldFish, Bangladesh Office, Gulshan, Dhaka 1213, Bangladesh
| |
Collapse
|
29
|
Inactivation of Salmonella in steamed fish cake using an in-package combined treatment of cold plasma and ultraviolet-activated zinc oxide. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Johnson Esua O, Sun DW, Cheng JH, Wang H, Lv M. Functional and bioactive properties of Larimichthys polyactis protein hydrolysates as influenced by plasma functionalized water-ultrasound hybrid treatments and enzyme types. ULTRASONICS SONOCHEMISTRY 2022; 86:106023. [PMID: 35561594 PMCID: PMC9112016 DOI: 10.1016/j.ultsonch.2022.106023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 05/04/2023]
Abstract
The effects of plasma functionalized water (PFW) and its combination with ultrasound (UPFW) on the functional and bioactive properties of small yellow croaker protein hydrolysates (SYPHs) produced from three enzymes were investigated. Fluorescence and UV-Vis spectroscopy indicated that SYPHs tended to unfold with increasing intensity and shift in wavelengths to more flexible conformations under PFW and UPFW treatments. Particle size distribution and microstructure analysis revealed that treatments could disrupt aggregation of protein molecules to increase the roughness, specific surface area, and decrease the particle size of peptides during hydrolysis. The partially denatured structure of SYPHs induced by treatments increased the susceptibility of the fish proteins to exogenous enzymes, thereby accelerating the hydrolytic process to yield peptides with improved solubility, decreased emulsifying and foaming properties, and improved enzyme-specific antioxidant properties. The results revealed that the functionality of SYPHs was influenced by the treatment method and the enzyme type employed.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
- Corresponding author. http://www.ucd.ie/refrighttp://www.ucd.ie/sun
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Mingchun Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
31
|
Asl PJ, Rajulapati V, Gavahian M, Kapusta I, Putnik P, Mousavi Khaneghah A, Marszałek K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Zhang K, Zhang Z, Zhao M, Milosavljević V, Cullen P, Scally L, Sun DW, Tiwari BK. Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Ali M, Sun DW, Cheng JH, Johnson Esua O. Effects of combined treatment of plasma activated liquid and ultrasound for degradation of chlorothalonil fungicide residues in tomato. Food Chem 2022; 371:131162. [PMID: 34600368 DOI: 10.1016/j.foodchem.2021.131162] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
The effects of combined treatment (PAL-U) of plasma-activated liquid (PAL) including plasma-activated water (PAW) and plasma-activated buffer solution (PABS) and ultrasound (U) for the degradation of chlorothalonil fungicide on tomato fruit was investigated. Distilled water and buffer solution were activated by radiofrequency plasma jet for durations of 1, 3, 5, and 10 min to obtain PAL1 to PAL10. Fruits were immersed in PAL for 15 min and also in distilled water with sonication for 15 min for individual treatments, and in PAL with sonication for 15 min for combined treatments. The maximum chlorothalonil fungicide residues were reduced by 89.28 and 80.23% for PAW10-U and PABS10-U, respectively. HPLC-MS characterization revealed chlorothalonil degradation pathway and formation of 2,4,5-trichloroisophthalonitrile, 2,4-dichloroisophthalonitrile, 4-chloroisophthalonitrile, isophthalonitrile and phenylacetonitrile as degradation products. Treatments also showed no negative effects on tomato quality. Therefore, PAL and PAL-U treatments could serve as effective methods for degrading pesticides on tomatoes.
Collapse
Affiliation(s)
- Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland.
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
34
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
35
|
Lv X, Cheng JH. Evaluation of the Effects of Cold Plasma on Cell Membrane Lipids and Oxidative Injury of Salmonella typhimurium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030640. [PMID: 35163904 PMCID: PMC8838372 DOI: 10.3390/molecules27030640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Salmonella typhimurium (S. typhimurium) is a major causative agent of foodborne illness worldwide. Cold plasma (CP) was used to inactivate S. typhimurium and to investigate the effect of CP on cell membrane lipids and oxidative injury of cells. Results indicated that the inactivation effect of CP on S. typhimurium was positively correlated with the treatment time and voltage. S. typhimurium was undetectable (total number of surviving colonies <2 log CFU/mL) after 5 min treatment with the voltage of 50 V. CP treatment caused damage to the cell membrane of S. typhimurium and the leakage of cell contents, and the relative content of unsaturated fatty acids in cell membrane decreased. Cell membrane lipids were oxidized; the malondialdehyde content increased from 0.219 nmol/mL to 0.658 nmol/mL; the catalase activity of S. typhimurium solution increased from 751 U/mL to 2542 U/mL; and the total superoxide dismutase activity increased from 3.076 U/mL to 4.54 U/mL, which confirmed the oxidative damage in S. typhimurium cell membrane caused by CP treatment. It was demonstrated that the potential application of plasma-mediated reactive oxygen species is suitable for destroying the structures of the cell membrane and ensuring the microbial safety of fresh food samples.
Collapse
Affiliation(s)
- Xiaoye Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China;
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
36
|
Corona Discharge Power of Plasma Treatment Influence on the Physicochemical and Microbial Quality of Enoki Mushroom (Flammulina velutipes). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma treatment was widely known as an effective technology applied for contact-surface decontamination. Enoki (Flammulina velutipes) was an edible-medicinal mushroom with different phytochemicals and bioactive components beneficial for human health. Enoki mushroom had high respiration rate therefore it was highly perishable after harvesting. Moreover, it was greatly susceptible to microbial contamination but it was not feasible to be decontaminated by normal water washing. It’s urgent to extend shelf-life and control microbial criteria on this mushroom in dry manner without aqueous treatment. Corona discharge plasma was among 4 kinds of diverse cold atmospheric pressure plasma sources widely applied in food industry. This study demonstrated the influence of corona discharge plasma power values (control, 120, 150, 180, 210 W) on the physicochemical and microbial characteristics of Enoki mushroom during 10 days of storage at ambient temperature. Results showed that Enoki mushroom should be treated at 150 W of corona discharge plasma power to retain weight loss, total soluble solid, vitamin C in acceptable values while reducing total Aerobic count, Coliform, Enterobacteriaceae as much as possible. At the 10th day of storage, the weight loss, total soluble solid, vitamin C, total Aerobic count, Coliform, Enterobacteriaceae were recorded at 3.35±0.07%, 6.98±0.03 oBrix, 14.81±0.04 mg/100 g, 4.71±0.05 log CFU/g, 3.17±0.02 log CFU/g, 2.13±0.01 CFU/g, respectively. Findings of this research proved that corona discharge plasma pretreatment would be appropriate to maintain physicochemical properties and retard microbial loads on Enoki mushroom during preservation.
Collapse
|
37
|
|
38
|
Rothwell JG, Alam D, Carter DA, Soltani B, McConchie R, Zhou R, Cullen PJ, Mai-Prochnow A. The Antimicrobial Efficacy Of Plasma Activated Water Against Listeria and E. coli Is Modulated By Reactor Design And Water Composition. J Appl Microbiol 2021; 132:2490-2500. [PMID: 34957649 DOI: 10.1111/jam.15429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
AIMS This study aimed to compare the efficacy of plasma activated water (PAW) generated by two novel plasma reactors against pathogenic foodborne illness organisms. METHODS AND RESULTS The antimicrobial efficacy of PAW produced by a bubble spark discharge (BSD) reactor and a dielectric barrier discharge-diffuser (DBDD) reactor operating at atmospheric conditions with air, multiple discharge frequencies and Milli-Q and tap water, was investigated with model organisms Listeria innocua and Escherichia coli in situ. Optimal conditions were subsequently employed for pathogenic bacteria Listeria monocytogenes, E. coli and Salmonella enterica. DBDD-PAW reduced more than 6-log of bacteria within 1 minute. The BSD-PAW, while attaining high log reduction, was less effective. Analysis of physicochemical properties revealed that BSD-PAW had a greater variety of reactive species than DBDD-PAW. Scavenger assays designed to specifically sequester reactive species demonstrated a critical role of superoxide, particularly in DBDD-PAW. CONCLUSIONS DBDD-PAW demonstrated rapid antimicrobial activity against pathogenic bacteria, with superoxide the critical reactive species. SIGNIFICANCE AND IMPACT OF STUDY This study demonstrates the potential of DBDD-PAW produced using tap water and air as a feasible and cost-effective option for antimicrobial applications, including food safety.
Collapse
Affiliation(s)
- Joanna G Rothwell
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - David Alam
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, Australia
| | - Dee A Carter
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, New South Wales, Australia.,The Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, New South Wales, Australia
| | - Behdad Soltani
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, Australia
| | - Robyn McConchie
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Renwu Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, Australia
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, Australia
| | - Anne Mai-Prochnow
- School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Cheng JH, Wang H, Sun DW. An overview of tropomyosin as an important seafood allergen: Structure, cross-reactivity, epitopes, allergenicity, and processing modifications. Compr Rev Food Sci Food Saf 2021; 21:127-147. [PMID: 34954871 DOI: 10.1111/1541-4337.12889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Tropomyosin (TM) is a major allergen in crustaceans, which often causes allergy and is fatal to some consumers. Currently, the most effective treatment is to avoid ingesting TM, although most adverse events occur in accidental ingestion. In this review, the molecular characterization, epitopes, cross-reactivity, and pathogenesis of TM are introduced and elucidated. Modification of TM by traditional processing methods such as heat treatment and enzymatic hydrolysis, and innovative processing technologies including high-pressure treatment, cold plasma (CP), ultrasound, pulsed electric field (PEF), pulsed ultraviolet, microwave and irradiation are discussed in detail. Particularly, enzymolysis, PEF, and CP technologies show great potential for modifying TM and more studies are needed to verify their effectiveness for the seafood industry. Possible mechanisms and the advantages/disadvantages of these technologies for the mitigation of TM allergenicity are also highlighted. Further work should be conducted to investigate the allergenicity caused by protein segments such as epitopes, examine the interaction sites between the allergen and the processing techniques and reveal the reduction mechanism of allergenicity.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Huifen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Belfield, Ireland
| |
Collapse
|
40
|
Zhu H, Han Z, Cheng JH, Sun DW. Modification of cellulose from sugarcane (Saccharum officinarum) bagasse pulp by cold plasma: Dissolution, structure and surface chemistry analysis. Food Chem 2021; 374:131675. [PMID: 34883432 DOI: 10.1016/j.foodchem.2021.131675] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 01/27/2023]
Abstract
Cellulose is a most abundant natural biopolymer, however, the strong hydrogen bonding system makes cellulose hard to dissolve, limiting its further applications. In this study, an innovative cold plasma (CP) technology was used to modify cellulose from sugarcane (Saccharum officinarum) bagasse pulp. Dissolution, structure, and surface chemistry of cellulose before and after CP treatment were investigated. Results showed that the dissolution rate of cellulose after different CP treatment time (3-12 min) and operating voltage (40-70 kV) was significantly improved. Roughness, even holes (CP treatment 9 min with 50 kV) and breakage (CP treatment 9 min with 70 kV) were observed on the surface. The crystallinity index decreased from 62.31% (control) to 60.88% (CP treatment 3 min with 50 kV). The hydrogen bonding force was weakened and the peak intensity of CO and CO stretching vibration groups were enhanced. Therefore, CP-modified cellulose may be applied more in future, such as biological films for food future packaging.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland; ITMO University, Lomonosova Street 9, Saint-Petersburg 191002, Russian Federation.
| |
Collapse
|
41
|
Zhu H, Cheng JH, Han Z, Han Z. Cold plasma enhanced natural edible materials for future food packaging: structure and property of polysaccharides and proteins-based films. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34766864 DOI: 10.1080/10408398.2021.2002258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural edible films have recently gained a lot of interests in future food packaging. Polysaccharides and proteins in edible materials are not toxic and widely available, which have been confirmed as sustainable and green materials used for packaging films due to their good film-forming abilities. However, polysaccharides and proteins are hydrophilic in nature, they exhibit some undesirable material properties. Cold plasma (CP), as an innovative and highly efficient technology, has been introduced to improve the performance of polysaccharides and proteins-based films. This review mainly presents the basic information of polysaccharides and proteins-based films, principles of CP modified biopolymer films, and the effects of CP on the structural changes including surface morphology, surface composition, and bulk modification, and properties including wettability, mechanical properties, barrier properties, and thermal properties of polysaccharides, proteins, and polysaccharide/protein composite-based films. It is concluded that the CP modified performances are mainly depending on the polysaccharides and proteins raw materials, CP generation types and treatment conditions. The existing difficulties and future trends are also discussed. Despite natural materials currently not fully substitute for traditional plastic materials, CP has exhibited an effective solution to shape the future of natural materials for food packaging.
Collapse
Affiliation(s)
- Hong Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhuorui Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
42
|
Pan Y, Cheng JH, Sun DW. Metabolomic analyses on microbial primary and secondary oxidative stress responses. Compr Rev Food Sci Food Saf 2021; 20:5675-5697. [PMID: 34601780 DOI: 10.1111/1541-4337.12835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Food safety is veryimportant in our daily life. In food processing or disinfection, microorganisms are commonly exposed to oxidative stress perturbations. However, microorganisms can adapt and respond to physicochemical interventions, leading to difficulty and complexity for food safety assurance. Therefore, understanding the response mechanisms of microbes and providing an overview of the responses under oxidative stress conditions are beneficial for ensuring food safety for the industry. The current review takes the metabolomics approach to reveal small metabolite signatures and key pathway alterations during oxidative stress at the molecular and technical levels. These alterations are involved in primary oxidative stress responses due to inactivation treatments such as using hypochlorite (HOCl), hydrogen peroxide (H2 O2 ), electrolyzed water (EW), irradiation, pulsed light (PL), electron beam (EB), and secondary oxidative stress responses due to exposures to excessive conditions such as heat, pressure, acid, and alkaline. Details on the putative origin of exogenous or endogenous reactive oxygen species (ROS) are discussed, with particular attention paid to their effects on lipid, amino acid, nucleotide, and carbohydrate metabolism. In addition, mechanisms on counteracting oxidative stresses, stabilization of cell osmolality as well as energy provision for microbes to survive are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, Ireland
| |
Collapse
|
43
|
Zhao YM, Oliveira M, Burgess CM, Cropotova J, Rustad T, Sun DW, Tiwari BK. Combined effects of ultrasound, plasma-activated water, and peracetic acid on decontamination of mackerel fillets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Shen C, Rao J, Wu Q, Wu D, Chen K. The effect of indirect plasma-processed air pretreatment on the microbial loads, decay, and metabolites of Chinese bayberries. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Mao L, Mhaske P, Zing X, Kasapis S, Majzoobi M, Farahnaky A. Cold plasma: Microbial inactivation and effects on quality attributes of fresh and minimally processed fruits and Ready-To-Eat vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Soro AB, Noore S, Hannon S, Whyte P, Bolton DJ, O’Donnell C, Tiwari BK. Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Xu L, Hou H, Farkas B, Keener KM, Garner AL, Tao B. High voltage atmospheric cold plasma modification of bovine serum albumin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Effects of Pre-Treatment Using Plasma on the Antibacterial Activity of Mushroom Surfaces. Foods 2021; 10:foods10081888. [PMID: 34441665 PMCID: PMC8394274 DOI: 10.3390/foods10081888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Although non-thermal atmospheric pressure plasma is an efficient tool for preventing post-harvest microbial contamination, many studies have focused on the post-treatment of infected or contaminated foods. In this study, we examined the antimicrobial quality of mushrooms pre-treated with a non-thermal atmospheric pressure plasma jet (NTAPPJ) or plasma-treated water (PTW). The CFU (Colony Forming Unit) number of Escherichia coli inoculated on surfaces of mushrooms pre-treated with NTAPPJ or PTW was significantly reduced (about 60-75% for NTAPPJ and about 35-85% for PTW), and the reduction rate was proportional to the treatment time. Bacterial attachment and viability of the attached bacteria were decreased on NTAPPJ-treated mushroom surfaces. This may be caused by the increased hydrophilicity and oxidizing capacity observed on NTAPPJ-treated mushroom surfaces. In PTW-treated mushrooms, bacterial attachment was not significantly changed, but death and lipid peroxidation of the attached bacteria were significantly increased. Analysis of mushroom quality showed that loss of water content was greater in mushrooms treated with NTAPPJ compared to that in those with no treatment (control) and PTW treatment during storage. Our results suggest that pre-treatment with NTAPPJ or PTW can improve the antibacterial quality of mushroom surfaces by decreasing bacterial attachment (for NTAPPJ) and increasing bacterial lipid peroxidation (for both NTAPPJ and PTW).
Collapse
|
49
|
Rathod NB, Ranveer RC, Bhagwat PK, Ozogul F, Benjakul S, Pillai S, Annapure US. Cold plasma for the preservation of aquatic food products: An overview. Compr Rev Food Sci Food Saf 2021; 20:4407-4425. [PMID: 34355478 DOI: 10.1111/1541-4337.12815] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma (CP) is an upcoming technology implemented for the preservation of highly perishable foods, especially aquatic food products (AFPs). The high moisture content, high-quality protein with all essential amino acids and unsaturated fatty acids makes AFP more susceptible to microbial spoilage and oxidation of lipids and proteins. Spoilage lowers the nutritive value and could generate toxic components, making it unsafe for consumption. In recent times, the rising demand for food products of aquatic origin with preserved quality and extended shelf-life has been recorded. In addition, minimally or nonthermally processed and preserved foods are gaining great attention. CP technology has demonstrated an excellent ability to inactivate microorganisms without promoting their resistance and triggering some deteriorative enzymes, which are typical factors responsible for the spoilage of AFP. Consequently, CP could be recommended as a minimal processing intervention for preserving the quality of AFP. This review focuses on different mechanisms of fish spoilage, that is, by microorganisms and oxidation, their inhibition via the application of CP, and the retention of quality and shelf-life extension of AFP.
Collapse
Affiliation(s)
- Nikheel Bhojraj Rathod
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), Raigad, Maharashtra, India
| | - Rahul Chudaman Ranveer
- Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli), Raigad, Maharashtra, India
| | - Prashant Kishor Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Sottawat Benjakul
- International Center for Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Uday Shriramrao Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| |
Collapse
|
50
|
Johnson Esua O, Cheng JH, Sun DW. Novel technique for treating grass carp (Ctenopharyngodon idella) by combining plasma functionalized liquids and Ultrasound: Effects on bacterial inactivation and quality attributes. ULTRASONICS SONOCHEMISTRY 2021; 76:105660. [PMID: 34271395 PMCID: PMC8283328 DOI: 10.1016/j.ultsonch.2021.105660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 05/03/2023]
Abstract
A novel technique for treating grass carp by combining plasma functionalized liquids and ultrasound to inactivate bacteria was developed. The effects of the plasma functionalized liquids (PFL) including plasma functionalized water (PFW) and buffer (PFB) and their respective combination with ultrasound treatment (USPFW and USPFB) on the oxidative and physical qualities of grass carp were also investigated. Individual applications of PFW and PFB significantly reduced the populations of Escherichia coli and Shewanella putrefaciens in the range of 0.31-1.18 log CFU/g, compared with the control with a reduction of 0.18 log CFU/g, while combined treatments of USPFW and USPFB presented additional reductions of 0.05-0.65 log CFU/g, with potential synergy demonstrated for PFW and ultrasound. The treatment resulted in improved biomedical index and nutritional value of fatty acids and lipids, protein structural unfolding, increased lipid oxidation and protein degradation with values within the acceptable limits, and the combined treatment was more effective for retarding the hardness reduction in grass carp, while the colour change was also significantly affected, resulting in increased whiteness. The results indicated that the combined treatments may be a promising approach to improving the quality of seafood products.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|