1
|
Liu P, Liu Z, Zhou H, Zhu J, Sun Z, Zhang G, Liu Y. Lipidomics in forensic science: a comprehensive review of applications in drugs, alcohol, latent fingermarks, fire debris, and seafood authentication. Mol Omics 2024. [PMID: 39400253 DOI: 10.1039/d4mo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Forensic science, an interdisciplinary field encompassing the collection, examination, and presentation of evidence in legal proceedings, has recently embraced lipidomics as a valuable tool. Lipidomics, a subfield of metabolomics, specializes in the analysis of lipid structures and functions, offering insights into biological processes that can aid forensic investigations. While not a substitute for DNA analysis in personal identification, lipidomics complements this technique by focusing on small biological molecules, with distinct sample requirements. This review comprehensively explores the current applications of lipidomics in forensic science. The review commences with an introduction to the concept and historical background of lipidomics, subsequently delving into its utilization in diverse areas such as drug analysis, ethyl alcohol and substitute assessment, latent fingermark detection, fire debris analysis, and seafood authentication. By showcasing the various biological materials and methods employed, this review underscores the potential of lipidomics as a powerful adjunct in forensic investigations.
Collapse
Affiliation(s)
- Pingyang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Hong Zhou
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Jun Zhu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Yao Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
2
|
Shejawale D, Lavania J, Muthuganesan N, Jeyarani T, Rastogi NK, Subramanian R. Alternate solvent for soybean oil extraction based on extractability and membrane solvent recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34038-7. [PMID: 38969883 DOI: 10.1007/s11356-024-34038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Ethyl acetate, acetone, 2-propanol, 1-propanol, and ethanol were screened among the class 3 category solvents as an alternative to hexane based on operational and occupational safety and bio-renewability potential. All five solvents exhibited higher extractability (22.3 to 23.2%) than hexane (21.5%) with soybean flour. Additionally, there was no significant difference in the fatty acid and triacylglycerol (TAG) composition of the oils extracted using alternate solvents and hexane, indicating the oil quality was not affected. More importantly, ethyl acetate (2.1%) resulted in a marginally higher yield of TAG, while 2-propanol showed a nearly equal yield to hexane. Further, membrane desolventizing was attempted to mitigate the limitations of higher thermal energy requirements. One of the polydimethylsiloxane membranes exhibited good selectivity (TAG rejection 85.8%) and acceptable flux (59.3 L·m-2·h-1) with an ethyl acetate miscella system. Under plant-simulated recirculation conditions, a two-stage membrane process reduced the oil content in permeate to 2.5%. The study revealed that ethyl acetate could potentially replace hexane, considering its higher TAG extractability and suitability for the membrane-augmented solvent recycling process in the extraction plants.
Collapse
Affiliation(s)
- Deepali Shejawale
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Jyoti Lavania
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Nageswaran Muthuganesan
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Trade and International Cooperation Division, Food Safety and Standards Authority of India, New Delhi, 110002, India
| | - Thangaraj Jeyarani
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Navin Kumar Rastogi
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Rangaswamy Subramanian
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Ni X, Bai H, Han J, Zhou Y, Bai Z, Luo S, Xu J, Jin C, Li Z. Inhibitory activities of essential oils from Syzygium aromaticum inhibition of Echinochloa crus-galli. PLoS One 2024; 19:e0304863. [PMID: 38905259 PMCID: PMC11192376 DOI: 10.1371/journal.pone.0304863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164°C, 165°C (SAEO-165), 169°C, 170°C 175°C and 180°C. The SAEO-165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and β-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. SAEO induced excessive generation of reactive oxygen species leading to oxidative stress and ultimately tissue damage in E. crus-galli. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.
Collapse
Affiliation(s)
- Xianzhi Ni
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Haodong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jincai Han
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Zhou
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhendong Bai
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Siquan Luo
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Jingjing Xu
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Chenzhong Jin
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
| | - Zuren Li
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Collaborative Innovation Center for Field Weeds Control, Science and Technology, Hunan University of Humanities, Loudi, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, P.R. China, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
4
|
Shihab JM, Rashid KT, Toma MA. A review on membrane technology application for vegetable oil purification processes. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
In current paper, a comprehensive review to contribute the present insight an implementations and the recent improvements through the diverse endeavor made by the researchers utilizing a membrane technique for degumming, deacidifying, dewaxing and discoloration edible vegetable oils with and without solvent availability and also the solvent recovery has been evaluated. Endeavors made with NF, UF, MF and non-porous membranes, have shown the capability of these membranes to predicate vegetable oil treatment. A membrane technique is noticeably simple and potentially provides many usefulness in vegetable oil purification. It appears that oils treatment with membranes, which carried out at low temperatures that provides saving energy, with real cancellation of stages, provides a promising alternate to conventional procedure, towards the accomplishment of eco-friendly and cost-effective operations that are technically sophisticated. Generally, the solvent (hexane-dilution) technique enhances the membrane oil flux. For dewaxing undiluted vegetable oils, the effective membrane was MF, whereas in dewaxing solvent-diluted oils process UF membranes were more energetic.
Collapse
Affiliation(s)
- Jenan M. Shihab
- Membrane Technology Research Unit, Chemical Engineering Department , University of Technology-Iraq , Alsinaa Street 52, 10066 Baghdad , Iraq
| | - Khalid T. Rashid
- Membrane Technology Research Unit, Chemical Engineering Department , University of Technology-Iraq , Alsinaa Street 52, 10066 Baghdad , Iraq
| | - M. A. Toma
- Membrane Technology Research Unit, Chemical Engineering Department , University of Technology-Iraq , Alsinaa Street 52, 10066 Baghdad , Iraq
| |
Collapse
|
5
|
Crosslinked polyethersulfone membranes for organic solvent nanofiltration in polar aprotic and halogenated solvents. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Yadav D, Karki S, Ingole PG. Nanofiltration (NF) Membrane Processing in the Food Industry. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09320-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Nakajima M. Micro-engineering based Structuring and Valorization of Lipid Foods. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mitsutoshi Nakajima
- Faculty of Life and Environmental Sciences/Alliance for Research on the Mediterranean and North Africa, University of Tsukuba
| |
Collapse
|
8
|
Widiastuti N, Silitonga RS, Dharma HNC, Jaafar J, Widyanto AR, Purwanto M. Decreasing free fatty acid of crude palm oil with polyvinylidene fluoride hollow fiber membranes using a combination of chitosan and glutaraldehyde. RSC Adv 2022; 12:22662-22670. [PMID: 36105979 PMCID: PMC9373912 DOI: 10.1039/d2ra04005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Crude palm oil (CPO) has emerged as a significant commodity in the economic and social development of producer nations.
Collapse
Affiliation(s)
- Nurul Widiastuti
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Romaya Sitha Silitonga
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Hadi Nugraha Cipta Dharma
- Advanced Membrane Technology (AMTEC) Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology (AMTEC) Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Alvin Rahmad Widyanto
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Sukolilo, Surabaya 60111, Indonesia
| | - Mochammad Purwanto
- Chemical Engineering, Department of Industrial and Process Technology, Institut Teknologi Kalimantan, Jl. Soekarno Hatta No. KM 15, Balikpapan 76127, Indonesia
| |
Collapse
|