1
|
Ma T, Lin H, Cao L, Sui J, Wang Q, Wang K. Exploring critical quality indicators and developing a non-destructive detection method using near-infrared spectroscopy for sea bass (Lateolabrax japonicus) quality evaluation. Food Chem 2025; 464:141640. [PMID: 39437677 DOI: 10.1016/j.foodchem.2024.141640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
In this study, chemometrics were employed to explore the relationship between sensory evaluation and physicochemical indicators of sea bass (Lateolabrax japonicus). Through principal component analysis, cluster analysis, and Pearson correlation analysis, three pivotal indicators were identified: protein content, b* value, and condition factor. Leveraging the grey relational analysis, weights were assigned to these three core quality indicators, resulting in a comprehensive sea bass quality evaluation model: Y = 0.911 × protein (g/100 g) + 0.742 × b* + 0.747 × condition factor. Moreover, near-infrared spectroscopy combined with chemometrics were employed to evaluate the quality of sea bass. The different origins of sea bass were accurately distinguished using orthogonal partial least squares discriminant analysis. The partial least squares regression model was constructed for predicting the critical quality indicator, protein content, with R2P of 0.926. This study offers new insights for developing rapid, economical, and reliable methods for assessing aquatic product quality.
Collapse
Affiliation(s)
- Ting Ma
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Qing Wang
- Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Fuding, Fujian 355200, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
2
|
Lee SH, Kim HY. Analyses of the physicochemical and sensory characteristics of black goat triceps brachii muscle based on slaughter age. Food Chem X 2024; 24:101905. [PMID: 39525061 PMCID: PMC11546540 DOI: 10.1016/j.fochx.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, we aimed to analyze the effects of slaughter age on black goat meat's physicochemical and nutritional characteristics. Goats (age: 3, 6, 9, 12, 24, and 36 months) reared under identical conditions were used in this study. The key parameters were analyzed, including color, cooking yield, shear force, free amino acid (FAA) levels, free fatty acid levels, and sensory attributes. Hue values decreased, whereas redness increased with age. Umami and sweet FAA levels increased with age, and bitter FAA levels increased from 9 months. The flavor scores increased with age up to 9 months. Off-flavors were significantly higher in goats aged 24 and 36 months than in those aged 3 and 6 months. Goats aged 9 and 12 months had significantly higher texture scores than those aged 3, 6, and 36 months. Overall, our findings suggest that goats aged 9 and 12 months exhibit the best sensory qualities.
Collapse
Affiliation(s)
- Sol-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
- Resources Science Research, Kongju National University, Yesan 32439, Republic of Korea
| |
Collapse
|
3
|
Kaić A, Luštrek B, Žgur S, Potočnik K. Can the Suspension Method (Tenderstretch vs. Achilles Tendon) Enhance Horsemeat Quality? Animals (Basel) 2024; 14:3540. [PMID: 39682505 DOI: 10.3390/ani14233540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated whether the suspension method (tenderstretch, TS or Achilles tendon, AT) can improve the quality of horsemeat by analyzing longissimus dorsi (LD) and semitendinosus (ST) muscles. A total of 25 horse carcasses were considered experimental units and split longitudinally, with one half suspended using the TS method and the other half using the AT method, which enabled a direct comparison within the carcass. After 7 days of aging under commercial processing conditions, the LD and ST muscles were analyzed for pH, color (L*, a*, b*), water-holding capacity (drip loss, thawing loss, cooking loss), tenderness (Warner-Bratzler shear force), and sarcomere length. Statistical analysis was performed using the MIXED procedure in SAS, with Bonferroni correction applied for post hoc comparisons. Significant differences were found between the muscles: LD had higher tenderness (39.28 N vs. 49.77 N, p = 0.0011), lower cooking loss (23.56% vs. 27.04%, p = 0.0002), and higher thawing loss (12.38% vs. 9.72%, p = 0.0021) compared to ST muscle, which had a lighter color (L* = 41.90 vs. 37.73, p < 0.0001) and longer sarcomeres (2.22 μm vs. 1.74 μm, p < 0.0001). While the TS suspension method significantly increased sarcomere length (2.05 μm vs. 1.92 μm, p = 0.0020), it did not lead to significant improvements in other quality attributes such as pH, water-holding capacity, or tenderness. The results indicate that although the TS method affects muscle structure by elongating sarcomeres (with an average difference of 0.13 μm), it does not significantly improve the overall quality of the horsemeat compared to the AT method after 7 days of aging. A combination of factors beyond suspension methods, such as optimizing aging periods or considering additional processing techniques, may therefore be required to improve horsemeat quality. This study provides insights into the specific attributes of LD and ST muscles and their response to suspension methods and contributes to a better understanding of optimizing horsemeat quality for commercial purposes.
Collapse
Affiliation(s)
- Ana Kaić
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Barbara Luštrek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Silvester Žgur
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Klemen Potočnik
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Wang Y, Zhuang D, Munawar N, Zan L, Zhu J. A rich-nutritious cultured meat via bovine myocytes and adipocytes co-culture: Novel Prospect for cultured meat production techniques. Food Chem 2024; 460:140696. [PMID: 39111042 DOI: 10.1016/j.foodchem.2024.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/06/2024]
Abstract
Cultured meat, an emerging meat production technology, has reduced environmental burden as well as provide healthier and more sustainable method of meat culture. Fat in cultured meat is essential for enhancing texture, taste, and tenderness. However, current cultured meat production method is limited to single-cell type. To meet the consumer demands for cultured meat products, it is crucial to develop new methods for producing cultured meat products that contain both muscle and fat. In this study, cell viability and differentiation were promoted by controlling the ratio and cultivation conditions of myocytes and adipocytes. The total digestibility of cultured meat exceeded 37%, higher than that of beef (34.7%). Additionally, the texture, appearance, and taste of the co-cultured meat were improved. Collectively, this research has great promise for preparing rich-nutritious and digestion cultured meat.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China..
| |
Collapse
|
5
|
Ragucci S, Landi N, Di Maro A. Myoglobin as a molecular biomarker for meat authentication and traceability. Food Chem 2024; 458:140326. [PMID: 38970962 DOI: 10.1016/j.foodchem.2024.140326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The global incidence of economically motivated meat adulteration represents a crucial issue for the food industry. Undeclared addition of cheaper or low-quality species to meat products of high commercial value has become a common practice that needs to be countered with specific measures. In this framework, myoglobin (Mb) is a sarcoplasmic haemoprotein, primarily responsible for meat colour and has been successfully used in meat fraud authentication. Mb is highly soluble in water, easily monitored at 409 nm and species-specific. Knowing that various analytical DNA-based and protein-based methods, as well as spectroscopic techniques have been developed over the years for the detection of meat fraud, the aim of the present review is to take stock of the situation regarding the possible use of Mb as a molecular biomarker for the easy and rapid detection of undeclared species in meat products, avoiding the need of sophisticated or expensive equipment and specialised operators.
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy..
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy.; Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100-Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100-Caserta, Italy..
| |
Collapse
|
6
|
Krell J, Poveda-Arteaga A, Weiss J, Witte F, Terjung N, Gibis M. Influence of different storage atmospheres in packaging on color stability of beef. J Food Sci 2024; 89:5774-5787. [PMID: 39126691 DOI: 10.1111/1750-3841.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
The influence of storage atmosphere on the color development and myoglobin (Mb) redox state of beef was investigated. Beef samples were packaged in 6 different atmospheres including different degrees of vacuum, levels of oxygen, nitrogen, and a mixture with 20% CO2 and stored at 2°C for 14 days. Over this time, color and reflection of the packaged samples were measured. The used method allows quick, easy, and non-invasive measurement of the packaged samples, without using time consuming chemical assays. The method could be implemented in beef production lines, with potential for automatization. The data was used to illustrate the L*a*b* values for insights regarding qualitative color changes. Quantitative color changes were analyzed by calculation of color difference ΔE2000. Additionally, the relative levels of the deoxymyoglobin (DMb), oxymyoglobin (OMb) and metmyoglobin (MMb) were calculated from reflection spectra. The most important findings are: there is a strong correlation (rsp = 0.80 to 0.99 with one exception at rsp = 0.69 (high vacuum), p ≤ 0.05) between a* values and relative OMb levels. Storage atmospheres containing high oxygen concentrations lead to an attractive meat color, but a decreased overall color and Mb stability (ΔE = 5.02 (synthetic air) and ΔE = 2.23 (high oxygen) after 14 days of storage). Vacuum packaged samples are most stable in regards of color and Mb stability (ΔE = 1.79 (high vacuum) and ΔE = 1.63 (low vacuum) after 14 days of storage), but lack in the vibrant red color desired for sale. The experiments showed that color measurement can be a fast, non-invasive marker for meat quality. PRACTICAL APPLICATION: In this research article, six different storage atmospheres are compared regarding their influence on color stability and color quality of beef during storage in packaging. The results suggest which atmospheres to use in various sales-related scenarios. The method described can easily be applied in the meat industry to quickly monitor changes during storage and wet-aging without damaging the meat or opening the meat packages.
Collapse
Affiliation(s)
- Johannes Krell
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | | | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Franziska Witte
- DIL, German Institute of Food Technology, Quakenbrück, Germany
| | - Nino Terjung
- DIL, German Institute of Food Technology, Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
7
|
Varzaru I, Untea AE, Panaite TD, Turcu R, Saracila M, Vlaicu PA, Oancea AG. Chlorella vulgaris as a Nutraceutical Source for Broilers: Improving Meat Quality and Storage Oxidative Status. Foods 2024; 13:2373. [PMID: 39123564 PMCID: PMC11312065 DOI: 10.3390/foods13152373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to assess the impact of Chlorella vulgaris supplementation in broilers' diet, alone or in combination with vitamin E, on meat quality parameters, nutritional value, and oxidative stability during storage time. An experiment was conducted on 180 COBB 500 broiler chickens (14 days old), assigned into six treatments, following a 2 × 3 factorial arrangement. A corn-soybean meal diet was supplemented with three levels of C. vulgaris (0% in group C1, 1% in E1, 2% in E2), two levels of vitamin E (0% in C1, 250 ppm in C2), and a combination of them (1% C. vulgaris + 250 ppm vitamin (E3), 2% C. vulgaris + 250 ppm vitamin (E4)). Dietary incorporation of C. vulgaris, including those supplemented with vitamin E, resulted in a significant increase in meat protein content. DPA and DHA levels increased by 2.01-fold and 1.60-fold in the 2% C. vulgaris + vitamin E group. The PUFA/SFA ratio was increased across all dietary treatments (p < 0.0001). HPI and h/H registered the highest values as a result of 2% C. vulgaris supplementation, being linked with a positive effect in lowering cholesterol levels. Supplementation with 2% C. vulgaris and vitamin E exhibited a 1.45-fold increase in vitamin E concentration in thigh meat compared to the control group, being the highest level registered in thigh meat in this experiment. Metmyoglobin concentrations registered lower values in the thigh meat of the experimental groups, while deoxymyoglobin increased in the same groups when compared to the control group. The inclusion of C. vulgaris (1% and 2%) in combination with vitamin E (250 mg/kg) in broiler diets exhibited the best prevention of lipid oxidation after 7 days of refrigerated storage, defined by the highest efficiency factors assessed in terms of secondary oxidation products.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Tatiana Dumitra Panaite
- Department of Nutrition Physiology, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania;
| | - Raluca Turcu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Alexandra Gabriela Oancea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| |
Collapse
|
8
|
Rabatseta TP, Fourie P, Nkosi BD, Malebana IMM. Effect of dietary inclusion of Pennisetum purpureum (Napier) grass on growth performance, rumen fermentation and meat quality of feedlot sussex red steers. Trop Anim Health Prod 2024; 56:133. [PMID: 38642221 PMCID: PMC11032278 DOI: 10.1007/s11250-024-03959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
The aim of this study was to evaluate the growth performance, fermentation indices and meat quality of Sussex steers fed totally mixed rations that composed of graded inclusion levels of Napier grass (NP). Three experimental diets designated as diet 1 (0.0 g kg-1 NP: Control), diet 2 (300 g kg-1 NP grass) and diet 3 (600 g kg-1 NP) were formulated. Twenty-four male steers aged 8 months with an average body weight of 185.0 ± 30 kg were used. In a completely randomized design, the animals were allocated to the diets and fed for 120 days. Dietary NP inclusion reduced (P < 0.05) the animals' average daily gain and increased the feed efficiency. The steers' daily feed intake and final body weight decreased (P < 0.05) with a 600 g kg-1 inclusion level. The fermentation indices were not affected (P > 0.05) by the inclusion. While the inclusion reduced (P < 0.05) warm muscle temperature, it had no effect (P > 0.05) on carcass dressing percentage, warm and cold initial and ultimate pH. However, 600 g kg-1 inclusion level reduced (P > 0.05) warm and cold carcass weights. Meat physical attributes, moisture characteristics and tenderness were not affected (P > 0.05) by dietary treatments, except for the 7-days aged meat thaw loss, which increased at 600 g kg-1 inclusion level. Inclusion of 300 g kg-1 increased meat protein and fat, but dry and organic matter contents decreased with increasing inclusion levels. Dietary inclusion of NP grass up to 300 g kg-1 in steers' diets improved feed intake, carcass traits and yielded meat high in protein and fat.
Collapse
Affiliation(s)
- T P Rabatseta
- Agricultural Research Council-Animal Production, Irene Campus, Private Bag X2 - Irene 0062, Pretoria, South Africa
- Central University of Technology, Free State Private Bag X20539, Bloemfontein, 9300, South Africa
| | - P Fourie
- Central University of Technology, Free State Private Bag X20539, Bloemfontein, 9300, South Africa
| | - B D Nkosi
- Agricultural Research Council-Animal Production, Irene Campus, Private Bag X2 - Irene 0062, Pretoria, South Africa
| | - I M M Malebana
- Agricultural Research Council-Animal Production, Irene Campus, Private Bag X2 - Irene 0062, Pretoria, South Africa.
| |
Collapse
|
9
|
Liu C, Chen Z, Zhang Z, Wang Z, Guo X, Pan Y, Wang Q. Unveiling the Genetic Mechanism of Meat Color in Pigs through GWAS, Multi-Tissue, and Single-Cell Transcriptome Signatures Exploration. Int J Mol Sci 2024; 25:3682. [PMID: 38612491 PMCID: PMC11012088 DOI: 10.3390/ijms25073682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Meat color traits directly influence consumer acceptability and purchasing decisions. Nevertheless, there is a paucity of comprehensive investigation into the genetic mechanisms underlying meat color traits in pigs. Utilizing genome-wide association studies (GWAS) on five meat color traits and the detection of selection signatures in pig breeds exhibiting distinct meat color characteristics, we identified a promising candidate SNP, 6_69103754, exhibiting varying allele frequencies among pigs with different meat color characteristics. This SNP has the potential to affect the redness and chroma index values of pork. Moreover, transcriptome-wide association studies (TWAS) analysis revealed the expression of candidate genes associated with meat color traits in specific tissues. Notably, the largest number of candidate genes were observed from transcripts derived from adipose, liver, lung, spleen tissues, and macrophage cell type, indicating their crucial role in meat color development. Several shared genes associated with redness, yellowness, and chroma indices traits were identified, including RINL in adipose tissue, ENSSSCG00000034844 and ITIH1 in liver tissue, TPX2 and MFAP2 in lung tissue, and ZBTB17, FAM131C, KIFC3, NTPCR, and ENGSSSCG00000045605 in spleen tissue. Furthermore, single-cell enrichment analysis revealed a significant association between the immune system and meat color. This finding underscores the significance of the immune system associated with meat color. Overall, our study provides a comprehensive analysis of the genetic mechanisms underlying meat color traits, offering valuable insights for future breeding efforts aimed at improving meat quality.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
| | - Zitao Chen
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
| | - Zhe Zhang
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
| | - Zhen Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
| | - Xiaoling Guo
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
| | - Yuchun Pan
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Qishan Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, 866# Yuhangtang Road, Hangzhou 310058, China; (C.L.); (Z.C.); (Z.Z.); (Z.W.); (X.G.); (Y.P.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| |
Collapse
|
10
|
Qiu S, Li K, He X, Gu M, Jiang X, Lu J, Ma Z, Liang X, Gan Q. The Effects of Composite Alkali-Stored Spent Hypsizygus marmoreus Substrate on Carcass Quality, Rumen Fermentation, and Rumen Microbial Diversity in Goats. Animals (Basel) 2024; 14:166. [PMID: 38200897 PMCID: PMC10778354 DOI: 10.3390/ani14010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate the effects of composite alkali-stored spent Hypsizygus marmoreus substrate (SHMS) on carcass quality, rumen fermentation, and rumen microbial diversity in goats. Twenty-four 6-month-old Chuanzhong black goats with similar body weights (20 ± 5 kg) were selected and randomly divided into four groups (n = 6 per group) and received four treatments: 0% (control group, CG); 20% (low-addition group, LG); 30% (moderate-addition group, MG); and 40% (high-addition group, HG) of SHMS-replaced silage corn and oat hay. The experiment lasted for 74 days (including a 14 d adaptation period and a 60 d treatment period). The results of this study showed that MG and HG significantly improved the marble score of goat meat (p < 0.05). The flesh color score significantly increased in each group (p < 0.05). The fat color scores significantly increased in LG and MG (p < 0.05). There were no significant effects on the pH value or shear force of the longissimus dorsi in each group (p > 0.05). The cooking loss in MG was higher than that in CG (p < 0.05). The histidine and tyrosine contents in each group of muscles significantly increased (p < 0.05), with no significant effect on fatty acids (p > 0.05). The rumen pH of MG significantly decreased (p < 0.05), while the total volatile fatty acids (TVFAs) and ammoniacal nitrogen (NH3-N) increased by 44.63% and 54.50%, respectively. The addition of the SHMS altered both the alpha and beta diversities of the rumen microbiota and significant differences in the composition and structure of the four microbial communities. The dominant bacterial phylum in each group were Firmicutes and Bacteroidetes, with Prevotella 1 as the dominant bacterial genus. Correlation analysis revealed that rumen bacteria are closely related to the animal carcass quality and rumen fermentation. In the PICRUSt prediction, 21 significantly different pathways were found, and the correlation network showed a positive correlation between the Prevotella 1 and 7 metabolic pathways, while the C5-branched dibasic acid metabolism was positively correlated with nine bacteria. In summary, feeding goats with an SHMS diet can improve the carcass quality, promote rumen fermentation, and alter the microbial structure. The research results can provide a scientific reference for the utilization of SHMS as feed in the goat industry.
Collapse
Affiliation(s)
- Shuiling Qiu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Keyao Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangbo He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Mingming Gu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Xinghui Jiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Jianing Lu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Zhiyi Ma
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Xuewu Liang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Qianfu Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| |
Collapse
|
11
|
Liu L, Chen Q, Yin L, Tang Y, Lin Z, Zhang D, Liu Y. A Comparison of the Meat Quality, Nutritional Composition, Carcass Traits, and Fiber Characteristics of Different Muscular Tissues between Aged Indigenous Chickens and Commercial Laying Hens. Foods 2023; 12:3680. [PMID: 37835333 PMCID: PMC10573064 DOI: 10.3390/foods12193680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study is to assess the differences in the meat quality, nutritional composition, carcass traits, and myofiber characteristics between Hy-Line grey chickens (HLG, commercial breed) and Guangyuan grey chickens (GYG, indigenous breed). A total of 20 55-week-old chickens were selected for slaughter. The HLG exhibited a larger carcass weight, breast muscle weight, and abdominal fat weight (p < 0.05). The GYG exhibited a higher crude protein content, lower shear force, and smaller fiber size in the thigh muscles, whereas the HLG presented higher pH values and lower inosine-5'-monophosphate content in the breast muscles (p < 0.05). Darker meat based on higher redness and yellowness values was observed in the GYG instead of the HLG (p < 0.05). The research results also revealed parameter differences between different muscle types. Simultaneously, a correlation analysis showed significant correlations between the meat quality traits and myofiber characteristics (p < 0.05). In conclusion, aged indigenous chickens perform better in terms of tenderness and nutritional value in the thigh muscles, and may exhibit a better flavor in the breast muscles, but have a smaller breast muscle weight. Therefore, the current investigation provides a theoretical basis for the different needs of consumers and the processing of meat from old laying hens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Ben Akacha B, Ben Hsouna A, Generalić Mekinić I, Ben Belgacem A, Ben Saad R, Mnif W, Kačániová M, Garzoli S. Salvia officinalis L. and Salvia sclarea Essential Oils: Chemical Composition, Biological Activities and Preservative Effects against Listeria monocytogenes Inoculated into Minced Beef Meat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3385. [PMID: 37836125 PMCID: PMC10574192 DOI: 10.3390/plants12193385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this study, Salvia officinalis L. and Salvia sclarea essential oils (EOs) were investigated using gas chromatography-mass spectrometry (GC-MS) to describe their chemical composition. The obtained results show, for both EOs, a profile rich in terpene metabolites, with monoterpenes predominating sesquiterpenes but with significant qualitative and quantitative differences. The main compound found in the Salvia officinalis EO (SOEO) was camphor (19.0%), while in Salvia sclarea EO (SCEO), it was linalyl acetate (59.3%). Subsequently, the in vitro antimicrobial activity of the EOs against eight pathogenic strains was evaluated. The disc diffusion method showed a significant lysis zone against Gram-positive bacteria. The minimum inhibitory concentrations (MICs) ranged from 3.7 mg/mL to 11.2 mg/mL, indicating that each EO has specific antimicrobial activity. Both EOs also showed significant antiradical activity against DPPH radicals and total antioxidant activity. In addition, the preservative effect of SOEO (9.2%) and SCEO (9.2%), alone or in combination, was tested in ground beef, and the inhibitory effect against Listeria monocytogenes inoculated into the raw ground beef during cold storage was evaluated. Although the effect of each individual EO improved the biochemical, microbiological, and sensory parameters of the samples, their combination was more effective and showed complete inhibition of L. monocytogenes after 7 days of storage at 4 °C. The results show that both EOs could be used as safe and natural preservatives in various food and/or pharmaceutical products.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia;
| | - Améni Ben Belgacem
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia; (B.B.A.); (A.B.H.); (A.B.B.); (R.B.S.)
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia;
| | - Miroslava Kačániová
- Faculty of Horticulture, Institute of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|