1
|
McDonald C, Taylor D, Linacre A. PCR in Forensic Science: A Critical Review. Genes (Basel) 2024; 15:438. [PMID: 38674373 PMCID: PMC11049589 DOI: 10.3390/genes15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The polymerase chain reaction (PCR) has played a fundamental role in our understanding of the world, and has applications across a broad range of disciplines. The introduction of PCR into forensic science marked the beginning of a new era of DNA profiling. This era has pushed PCR to its limits and allowed genetic data to be generated from trace DNA. Trace samples contain very small amounts of degraded DNA associated with inhibitory compounds and ions. Despite significant development in the PCR process since it was first introduced, the challenges of profiling inhibited and degraded samples remain. This review examines the evolution of the PCR from its inception in the 1980s, through to its current application in forensic science. The driving factors behind PCR evolution for DNA profiling are discussed along with a critical comparison of cycling conditions used in commercial PCR kits. Newer PCR methods that are currently used in forensic practice and beyond are examined, and possible future directions of PCR for DNA profiling are evaluated.
Collapse
Affiliation(s)
- Caitlin McDonald
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| | - Duncan Taylor
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
- Forensic Science SA, GPO Box 2790, Adelaide, SA 5001, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; (C.M.); (A.L.)
| |
Collapse
|
2
|
Lisman D, Drath J, Zielińska G, Zacharczuk J, Piątek J, van de Wetering T, Ossowki A. The evidential value of dental calculus in the identification process. Sci Rep 2023; 13:21666. [PMID: 38066060 PMCID: PMC10709568 DOI: 10.1038/s41598-023-48761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
DNA analysis-based identification is by far the gold standard in forensic genetics and it should be performed in every case involving human remains or unidentified bodies. Bones and teeth are the preferred source of human DNA for genetic analysis. However, there are cases where the nature of the proceedings and historical significance prevent the disruption of skeletal structure. The remains may also be heavily degraded. In such situations, forensic geneticists seek alternative sources of human DNA. Teeth calculus has proven to be a viable source of DNA for identification purposes. The aim of this study was to assess the concentration of human DNA in teeth calculus and evaluate the usefulness of teeth calculus as a DNA source in the identification process. Teeth calculus was collected from skeletons exhumed between 2021 and 2022 by the PBGOT (Polish Genetic Database of Victims of Totalitarianism) team from the former Stalag IID prisoner-of-war camp in Stargard. Genetic analyses included the determination of autosomal and Y-STR markers. The total concentration of human DNA was also evaluated in samples from teeth calculus and teeth taken from the same individuals. The pilot study included 22 skeletons with a sufficient amount of calculus for isolation (specified in the protocol). Samples were taken from the largest areas of calculus deposited on lingual surfaces of mandibular incisors. The prepared samples underwent DNA extraction. Our study demonstrated that teeth calculus is a source of human DNA for remains from the World War II period. The obtained DNA concentration allowed for the determination of STR markers. It was shown that teeth calculus contains human DNA in an amount suitable for preliminary identification analyses.
Collapse
Affiliation(s)
- Dagmara Lisman
- Department of Forensic Genetic, Pomeranian Medical University, Szczecin, Poland.
| | - Joanna Drath
- Department of Forensic Genetic, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Forensic Genetic, Pomeranian Medical University, Szczecin, Poland
| | - Julia Zacharczuk
- Department of Forensic Genetic, Pomeranian Medical University, Szczecin, Poland
| | - Jarosław Piątek
- Department of Forensic Genetic, Pomeranian Medical University, Szczecin, Poland
| | - Thierry van de Wetering
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Ossowki
- Department of Forensic Genetic, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
3
|
Lisman D, Drath J, Teul I, Zielińska G, Szargut M, Dowejko J, Cytacka S, Piątek J, Ambroziak J, Śliżewski G, Ossowski A. The last flight of F/O Tadeusz Stabrowski. Identification of the polish pilot. Front Genet 2023; 14:1231451. [PMID: 37576561 PMCID: PMC10415905 DOI: 10.3389/fgene.2023.1231451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The paper presents the process of identifying an unnamed soldier of the Polish armed forces in the west, whose remains were found in a nameless grave at the municipal cemetery in Le Crotoy in France. The Polish Genetic Database of Victims of Totalitarianism team carried out the research in cooperation with the Ministry of Culture and National Heritage. A comprehensive analysis of autosomal and Y-STR markers was performed. Historical, anthropological, and forensic examinations of the remains were also carried out. The items found with the remains were also examined. Identification based on DNA analysis made it possible to restore the identity of the Polish pilot who died on 11 March 1943 near the French coast, F/O Tadeusz Stabrowski. The airman regained his name in 2018, he was about 26 years old at the time of his death and left behind a grieving wife and son in the United Kingdom. The success of identifying the NN remains was guaranteed by the appointment of an interdisciplinary team consisting of specialists in archaeology, anthropology, history, forensic medicine and forensic genetics. The analysis of historical sources allowed to determine 4 missing airmen whose remains could have been buried in the cemetery in Le Crotoy. An interesting aspect of the research was the cooperation with history enthusiasts and fans of Polish aviation, thanks to which it was finally possible to narrow down the group of pilots sought and reach the family of Tadeusz Stabrowski, who submitted comparative material for research. This is the first case of establishing the identity of a Polish pilot killed in France. Many institutions have been involved in the project, including Polish Ministry of Culture and National Heritage (MDiKN), which partially funded the research.
Collapse
Affiliation(s)
- Dagmara Lisman
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Drath
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Iwona Teul
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Zielińska
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Maria Szargut
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Dowejko
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Sandra Cytacka
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Jarosław Piątek
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| | - Jan Ambroziak
- Polish Ministry of Heritage and National Culture, Warsaw, Poland
| | | | - Andrzej Ossowski
- Department of Genetic Forensic, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Ashbridge SI, Randolph-Quinney PS, Janaway RC, Forbes SL, Ivshina O. Environmental conditions and bodily decomposition: Implications for long term management of war fatalities and the identification of the dead during the ongoing Ukrainian conflict. Forensic Sci Int Synerg 2022; 5:100284. [PMID: 36132432 PMCID: PMC9483745 DOI: 10.1016/j.fsisyn.2022.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Sarah I. Ashbridge
- Military Sciences, Royal United Services Institute, London, SW1A 2ET, UK
- Department of History, School of Arts and Humanities, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Patrick S. Randolph-Quinney
- Forensic Science Research Group, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rob C. Janaway
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Shari L. Forbes
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, Québec, Canada
| | | |
Collapse
|
5
|
Costal cartilage ensures low degradation of DNA needed for genetic identification of human remains retrieved at different decomposition stages and different postmortem intervals. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
The study aimed to evaluate if costal cartilage is a good source of DNA for genetic individual identification tests performed in forensic autopsies.
Materials and Methods
The study included samples of costal cartilage collected from 80 cadavers retrieved from different environments: indoors (flat/hospital), outdoors (primarily in the forest), a coal mine, a fire site, uninhabited buildings, a basement, bodies of fresh water, exhumation sites, and unknown locations. After isolation of DNA chondrocytes, T. Large autosomal chromosome (214 bp), T. Small autosomal chromosome (80 bp), and the Y chromosome (75 bp; for male cadavers), sequences were amplified using real-time PCR. Additionally, 23 autosomal short tandem repeat (STR) loci and 16 Y chromosome STR loci were amplified using multiplex PCR. Forensic DNA typing was done using capillary electrophoresis and all results were analyzed.
Results
There was no statistically significant difference in DNA concentration after T. Large, T. Small autosomal chromosome and the Y chromosome amplification between samples collected from cadavers retrieved from different environments. The DNA degradation index was the same regardless of the postmortem interval. The results show that it is possible to generate a full genetic profile from costal cartilage samples collected from cadavers retrieved from different environments and at different times elapsed after death.
Conclusions
The results suggest that costal cartilage can be routinely collected during forensic autopsies, especially from cadavers at the advanced decomposition stage.
Collapse
|
6
|
Zupanič Pajnič I, Obal M, Zupanc T. Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci Int 2020; 306:110056. [DOI: 10.1016/j.forsciint.2019.110056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/25/2023]
|
7
|
Amorim A, Fernandes T, Taveira N. Mitochondrial DNA in human identification: a review. PeerJ 2019; 7:e7314. [PMID: 31428537 PMCID: PMC6697116 DOI: 10.7717/peerj.7314] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) presents several characteristics useful for forensic studies, especially related to the lack of recombination, to a high copy number, and to matrilineal inheritance. mtDNA typing based on sequences of the control region or full genomic sequences analysis is used to analyze a variety of forensic samples such as old bones, teeth and hair, as well as other biological samples where the DNA content is low. Evaluation and reporting of the results requires careful consideration of biological issues as well as other issues such as nomenclature and reference population databases. In this work we review mitochondrial DNA profiling methods used for human identification and present their use in the main cases of humanidentification focusing on the most relevant issues for forensics.
Collapse
Affiliation(s)
- António Amorim
- Instituto Nacional de Medicina Legal e Ciências Forenses, Lisboa, Portugal
- Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Fernandes
- Escola de Ciências e Tecnologias, Universidade de Évora, Évora, Portugal
- Research Center for Anthropology and Health (CIAS), Universidade de Coimbra, Coimbra, Portugal
| | - Nuno Taveira
- Instituto Universitário Egas Moniz (IUEM), Almada, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Leskovar T, Zupanič Pajnič I, Jerman I, Črešnar M. Separating forensic, WWII, and archaeological human skeletal remains using ATR-FTIR spectra. Int J Legal Med 2019; 134:811-821. [PMID: 31172274 DOI: 10.1007/s00414-019-02079-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
ATR-FTIR spectroscopy is a fast and accessible, minimally or non-destructive technique which provides information on physiochemical characteristics of analyzed materials. In forensic and archaeological sciences, it is commonly used for answering numerous questions, including the archaeological or forensic context of the human skeletal remains. In this research, the accuracy of ATR-FTIR-obtained spectra for separation between forensic, WWII, and archaeological human skeletal remains was investigated. Building from the previously proposed methodological procedures, various ratio-based and whole spectra separation procedures were applied, carefully analyzed, and evaluated. Results showed that employing whole spectral domains works best for the separation of archaeological, WWII, and forensic samples, even with samples of highly variable origin. Principal component analysis (PCA) further highlighted the necessity of acknowledging all the major components in the remains: amides, phosphates, and carbonates for the separation. Most influential proved to be amide I, namely its secondary structure, which presented well-preserved and organized collagen structure in forensic and WWII samples, while highly degraded in archaeological samples. Using the whole spectral domain for separation between samples from different contexts proved to be fast and simple, with no manipulation beyond baseline correction and normalization of spectra necessary. However, a dataset with samples of known origin is required for the learning model and predictions. A less accurate alternative is separation based on combining ratios of peaks correlating to organics and minerals in the bone, which eliminated overlapping and managed to classify the majority of the samples correctly as archaeological, WWII, or forensic.
Collapse
Affiliation(s)
- Tamara Leskovar
- Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, 1000, Ljubljana, Slovenia.
| | - Irena Zupanič Pajnič
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Matija Črešnar
- Department of Archaeology, Faculty of Arts, University of Ljubljana, Zavetiška 5, 1000, Ljubljana, Slovenia
| |
Collapse
|
9
|
Analysis of four novel X-chromosomal short tandem repeats within 71 kb of the Xp22.3 region. Int J Legal Med 2017; 131:1229-1233. [DOI: 10.1007/s00414-017-1553-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|