1
|
Koroneos ZA, Alwine S, Tortora P, Pitcher M, Benedict C, Wee H, Kunselman A, Aynardi M, Lewis GS. Bicortical Compression and Construct Stability With Variable Pitch Locking Screws in Cadaveric Specimens. J Orthop Trauma 2024; 38:e339-e346. [PMID: 39325574 DOI: 10.1097/bot.0000000000002869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES A variable pitch locking screw is intended to provide interfragmentary compression combined with fixed angle stability of locking plate constructs. The objective of this study was to compare variable pitch locking screws (3.5-mm KreuLock Ti locking compression screws, Arthrex Inc., Naples, FL) with standard locking screws (from the same manufacturer) in bicortical fixation scenarios in cadaver bone by assessing (1) interfragmentary compression and plate-bone compression and (2) construct biomechanical stability. METHODS Nine matched pairs of fresh-frozen cadaveric specimens with an average age of 67.2 years (range, 37-83) were used. Interfragmentary compression and plate-bone compression associated with insertion of single bicortical screws were compared between the variable pitch and standard locking screws at increasing levels of torque. The specimens tested were distal tibiae having a simulated longitudinal fracture. Additionally, fibulae were osteotomized to create a stable longitudinal fracture pattern and were fixed with a 5-screw plate construct with either all variable pitch or all standard locking screws. One of the 5 screws was placed across the osteotomy without lagging. Fibulae were tested cyclically with axial with torsional loading to compare displacements, rotation, and loads at failure or tested in 4-point bending to compare construct stiffness and maximum force to failure. RESULTS Interfragmentary and plate-bone compression forces in the distal tibia model varied across specimens but were significantly higher with variable pitch locking screws compared with standard locking screws [512 N (SD = 324 N) vs. 79 N (SD = 64 N), P = 0.002, and 242 N (SD = 119 N) vs. 104 N (SD = 123 N), P = 0.028, respectively]. In cyclic loading of fibula constructs, no significant differences were detected in construct axial displacement or angular displacement (P > 0.05). In 4-point bending, no differences were detected in maximum force or bending stiffness (P > 0.05). CONCLUSIONS Variable pitch locking screws produced interfragmentary compression between cortices and plate-bone compression that was greater than that produced by standard locking screws. In a stable bicortical fibula fixation scenario under external loading, the stability of variable pitch locking screw constructs was similar to constructs with standard locking screws.
Collapse
Affiliation(s)
- Zachary A Koroneos
- Department for Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA
| | - Shelby Alwine
- Department for Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA
| | | | | | | | - Hwabok Wee
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA
| | - Allen Kunselman
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, The Pennsylvania State University, Hershey, PA
| | - Michael Aynardi
- Department for Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA
| | - Gregory S Lewis
- Department for Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
2
|
Mein C, Jones JR, Tennick C, Williams A. Recognition of the Presence of Bone Fractures Through Physicochemical Changes in Diagenetic Bone. APPLIED SPECTROSCOPY 2024; 78:159-174. [PMID: 37960870 PMCID: PMC10832324 DOI: 10.1177/00037028231213889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023]
Abstract
Much research has focused on attempting to understand the drivers of bone diagenesis. However, this sensitive process is easily influenced by various factors, particularly the condition of the remains (i.e., whether they have been subjected to trauma). Previous research demonstrates that trauma can influence soft tissue decomposition, yet to date, no studies have looked at how bone fractures could affect bone diagenesis. To address this gap, two short timescale studies were conducted to investigate the influence of bone fractures on the physicochemical composition of disarticulated, partially fleshed animal remains. Disarticulated porcine bones were either fractured using blunt force or sharp force whilst fresh (producing perimortem damage), at 60 days producing postmortem damage (postmortem interval (PMI)), or left intact and left outside for up to 180 days post-fracture/240 days PMI. Retrieved bone sections were then analyzed for physicochemical differences using non-destructive methods, i.e., scanning electron microscopy energy dispersive spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance. It was hypothesized that differences would be found in the physicochemical composition between the bones with fractures and those without after undergoing diagenetic change. The bone fractures significantly affected the elemental composition of bone over time, but structural composition initially remained stable. It was also possible to distinguish between perimortem and postmortem fractures using these two analytical techniques due to physicochemical differences. This research shows bone fractures can significantly alter the physicochemical composition of the bone during the postmortem period and have the potential to facilitate more accurate PMI estimations in forensic contexts.
Collapse
Affiliation(s)
- Caley Mein
- Research Centre for Field Archaeology and Forensic Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Jennifer R. Jones
- Research Centre for Field Archaeology and Forensic Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Catherine Tennick
- Research Centre for Field Archaeology and Forensic Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Anna Williams
- Research Centre for Field Archaeology and Forensic Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
3
|
Leblond L, Godio-Raboutet Y, Tomi F, Glard Y, La Greca R, Clement T, Evin M. Sliding on cortical shell: Biomechanical characterization of the vertebral cannulation for pedicle screw insertion. Clin Biomech (Bristol, Avon) 2023; 110:106102. [PMID: 37769380 DOI: 10.1016/j.clinbiomech.2023.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Pedicular screws pull-out has been well studied unlike their insertion. A need for characterizing cannulation before pedicle screw implantation is highlighted in literature and offers promising prospects for future intra-operation instrumentation. A reliable cannulation protocol for ex-vivo testing in swine and cadaver vertebrae is presented in this work to predict extra pedicular perforation. METHODS An MTS Acumen 3 A/T electrodynamic device, with a tri-axis 3 kN Kistler load cell mounted on a surgical tool was used to reproduce surgeon's gesture by moving at a constant rotational speed of 10°/mm and performing a three-section test. Perforation of the pedicle's cortical shell was planned through a design of experiment on the surgical tool angle at the entry point. Samples were scanned before and after mechanical tests and reproducibility of the protocol was tested on synthetic foam. Computation of the angle between cannulation tool and pedicle cortical shell was performed as well as cannulation coefficient of each perforation section. FINDINGS A total of 68 pedicles were tested: 19 perforated and 21 non-perforated human pedicles, 17 perforated and 16 non-perforated swine pedicles. The reproducibility of the protocol for cannulation coefficient computation resulted in an intraclass correlation coefficient of 0.979. Cannulation coefficients results presented variability within spinal levels as well as between swine and human model. Correlation between bone density and cannulation coefficient was found significant (p < 0.005). Torque measurement was found to be the best predictor of perforation. Threshold of angle for prediction of perforation was found to be 21.7°. INTERPRETATION Characterizing pedicle cannulation enables to predict extra pedicular perforation. Influence of bone mineral density and patient-specific morphology on pedicle cannulation has been highlighted together with a comparison of swine and cadaver models.
Collapse
Affiliation(s)
| | | | - Florent Tomi
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France
| | - Yann Glard
- Department of Paediatric Orthopaedics, Saint Joseph Hospital, Marseille, France
| | | | - Thomas Clement
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France
| | - Morgane Evin
- Aix Marseille Univ. Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
4
|
Quillen EE, Foster J, Sheldrake A, Stainback M, Glenn J, Cox LA, Bredbenner TL. Circulating miRNAs associated with bone mineral density in healthy adult baboons. J Orthop Res 2022; 40:1827-1833. [PMID: 34799865 PMCID: PMC9117570 DOI: 10.1002/jor.25215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/04/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and circulate in the blood, making them attractive biomarkers of disease state for tissues like bone that are challenging to interrogate directly. Here, we report on five miRNAs-miR-197-3p, miR-320a, miR-320b, miR-331-5p, and miR-423-5p-associated with bone mineral density (BMD) in 147 healthy adult baboons. These baboons ranged in age from 15 to 25 years (45-75 human equivalent years) and 65% were female with a broad range of BMD values including a minority of osteopenic animals. miRNAs were generated via RNA sequencing from buffy coats collected at necropsy and areal BMD (aBMD) measured postmortem via dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae. Differential expression analysis controlled for the underlying pedigree structure of these animals to account for genetic variation which may drive miRNA abundance and aBMD values. While many of these miRNAs have been associated with the risk of osteoporosis in humans, this finding is of interest because the cohort represents a model of normal aging and bone metabolism rather than a disease cohort. The replication of miRNA associations with osteoporosis or other bone metabolic disorders in animals with healthy aBMD suggests an overlap in normal variation and disease states. We suggest that these miRNAs are involved in the regulation of cellular proliferation, apoptosis, and protein composition in the extracellular matrix throughout life; and age-related dysregulation of these systems may lead to disease. These miRNAs may be early indicators of progression to disease in advance of clinically detectible osteoporosis.
Collapse
Affiliation(s)
- Ellen. E. Quillen
- Center for Precision Medicine and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine
| | | | | | - Maggie Stainback
- Center for Precision Medicine and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine
| | | | - Laura A. Cox
- Center for Precision Medicine and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine
| | - Todd L. Bredbenner
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs
| |
Collapse
|
5
|
Cox TC. Microcomputed tomography of craniofacial mineralized tissue: A practical user's guide to study planning and generating quality data. Bone 2020; 137:115408. [PMID: 32407962 DOI: 10.1016/j.bone.2020.115408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/26/2022]
Abstract
Whether in a clinical setting or a research environment using model organisms, X-ray-based computed tomography (CT) in its different forms represents the gold standard technology for the non-invasive imaging and quantification of mineralized tissues. While there are many excellent reviews on computed tomography in bone imaging, most focus on the appendicular skeleton. However, the craniofacial skeleton and mineralized dentition, which are frequently imaged for a variety of reasons, can require special considerations to ensure the best quality data are acquired and interpreted correctly. In this review, I will specifically focus on micro-computed tomography (microCT) related to the study of the craniofacial skeleton from the onset of cranioskeletal development through to adulthood using the mouse as the primary reference organism. In so doing, I will cover the important considerations when planning imaging studies, explain critical parameters of both scanning, reconstruction and 3D rendering of data that can impact quantification of different mineralized craniofacial tissues, and options for enabling accurate visualization of tomographic data.
Collapse
Affiliation(s)
- Timothy C Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
6
|
Baiker-Sørensen M, Herlaar K, Keereweer I, Pauw-Vugts P, Visser R. Interpol review of shoe and tool marks 2016-2019. Forensic Sci Int Synerg 2020; 2:521-539. [PMID: 33385145 PMCID: PMC7770457 DOI: 10.1016/j.fsisyn.2020.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
Abstract
This review paper covers the forensic-relevant literature in shoe and tool mark examination from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Martin Baiker-Sørensen
- Section of Firearms and Tools, Division of Chemical and Physical Traces, Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497GB, The Hague, the Netherlands
| | - Koen Herlaar
- Section of Firearms and Tools, Division of Chemical and Physical Traces, Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497GB, The Hague, the Netherlands
| | - Isaac Keereweer
- Section of Firearms and Tools, Division of Chemical and Physical Traces, Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497GB, The Hague, the Netherlands
| | - Petra Pauw-Vugts
- Section of Firearms and Tools, Division of Chemical and Physical Traces, Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497GB, The Hague, the Netherlands
| | - Richard Visser
- Section of Firearms and Tools, Division of Chemical and Physical Traces, Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497GB, The Hague, the Netherlands
| |
Collapse
|
7
|
Ford JM, Kumm TR, Decker SJ. An Analysis of Hounsfield Unit Values and Volumetrics from Computerized Tomography of the Proximal Femur for Sex and Age Estimation. J Forensic Sci 2019; 65:591-596. [PMID: 31670845 DOI: 10.1111/1556-4029.14216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan M. Ford
- Department of Radiology Morsani College of Medicine University of South Florida 2 Tampa General Circle, STC 6097 Tampa FL33606
| | - Todd R. Kumm
- Department of Radiology Morsani College of Medicine University of South Florida 2 Tampa General Circle, STC 6097 Tampa FL33606
| | - Summer J. Decker
- Department of Radiology Morsani College of Medicine University of South Florida 2 Tampa General Circle, STC 6097 Tampa FL33606
| |
Collapse
|
8
|
Trabecular bone density distribution in the scapula relevant to reverse shoulder arthroplasty. JSES OPEN ACCESS 2018; 2:174-181. [PMID: 30675591 PMCID: PMC6334872 DOI: 10.1016/j.jses.2018.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background How trabecular bone density varies within the scapula and how this may lead to more optimal reverse shoulder arthroplasty (RSA) screw placement has not been addressed in the scientific literature. The 3 columns of trabecular bone within the scapula adjacent to the glenoid fossa, one extending through the lateral border, a second into the base of the coracoid process, and a third extending into the spine of the scapula, were hypothesized to be of relatively similar density. Methods Two-dimensional axial computed tomography (CT) images of 19 fresh frozen cadaver specimens were obtained. Digital Imaging and Communications in Medicine (DICOM; National Electrical Manufacturers Association, Rosslyn, VA, USA) image files of the CT scanned scapulae were imported into Mimics 17.0 Materialise Software (Leuven, Belgium) for segmentation and 3-dimensional digital model generation. To determine the distribution of trabecular bone density, Hounsfield unit (HU) values in the scapulae gray value files obtained from Mimics were filtered to remove any cortical bone. HU values of 650 define the corticocancellous interface in CT image data and were considered to be cortical bone. Analyses of variance with post hoc Bonferroni tests were used to determine statistical differences between the intra- and inter-regions of bone density comparisons. Results The base of the coracoid process was statistically significantly less dense than the spine and the lateral border of the scapulae examined (P < .05). Discussion/Conclusion The higher-quality bone in the spine and lateral border, compared with the coracoid regions, may provide better bone purchase for screws when fixing the glenoid baseplate in RSA.
Collapse
|
9
|
Abstract
The purpose of this paper is to introduce a promising, novel method to aid in the assessment of bone quality in forensically relevant skeletal remains. BMD is an important component of bone's nutritional status and in skeletal remains of both juveniles and adults, and it can provide information about bone quality. For adults remains, it can provide information on pathological conditions or when bone insufficiency may have occurred. In juveniles, it provides a useful metric to elucidate cases of fatal starvation or neglect, which are generally difficult to identify. This paper provides a protocol for the anatomical orientation and analysis of skeletal remains for scanning via dual-energy X-ray absorptiometry (DXA). Three case studies are presented to illustrate when DXA scans can be informative to the forensic practitioner. The first case study presents an individual with observed longitudinal fractures in the weight bearing bones and DXA is used to assess bone insufficiency. BMD is found to be normal suggesting another etiology for the fracture pattern present. The second case study employed DXA to investigate suspected chronic malnutrition. The BMD results are consistent with results from long bone lengths and suggest the juvenile had suffered from chronic malnutrition. The final case study provides an example where fatal starvation in a fourteen-month infant is suspected, which supports autopsy findings of fatal starvation. DXA scans showed low bone mineral density for chronological age and is substantiated by traditional assessments of infant health. However, when dealing with skeletal remains taphonomic alterations should be considered before applying this method.
Collapse
Affiliation(s)
- Amanda R Hale
- Department of Biological Sciences, North Carolina State University;
| | - Ann H Ross
- Department of Biological Sciences, North Carolina State University
| |
Collapse
|