1
|
Smith JH, Lynch V, Amankwaa AO, Budowle B, Fonseca SA, Shako SK, Molefe I. 4th DNA Forensic Symposium: Challenges and future directions in Africa. Forensic Sci Int Synerg 2024; 9:100555. [PMID: 39328325 PMCID: PMC11424799 DOI: 10.1016/j.fsisyn.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
The 4th Forensic DNA Symposium in Africa underscored the critical role of regional collaboration in advancing forensic sciences, with a particular focus on forensic DNA examinations, databases, and humanitarian initiatives. The symposium aimed to assess the current forensic DNA capabilities across African countries and develop strategies to expand and better utilize DNA platforms. Key findings from the symposium highlight the necessity for enhanced cooperation among African nations to build robust forensic DNA databases and improve data-sharing mechanisms. The symposium also identified significant gaps in current capabilities and the need to develop legal frameworks, infrastructure, and expertise to support forensic initiatives. Moving forward, these findings suggest a strategic focus on capacity building, establishing standardized procedures, and implementing sustainable forensic practices across the continent. Champions were nominated by attending delegates to lead their respective countries in the implementation of these strategies, marking a critical step towards strengthening forensic science in Africa and addressing the pressing challenges related to crime and humanitarian efforts.
Collapse
Affiliation(s)
- J H Smith
- Forensic Services, South African Police Service/ University of South Africa. Corresponding author, 270 Pretorius Street, Arcadia, Pretoria, 0001, South Africa
| | - V Lynch
- DNAforAfrica, City of Cape Town, Western Cape, South Africa
| | - A O Amankwaa
- University Quality Lead (CSFS Accreditation), Department of Applied Sciences, UK
| | - B Budowle
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland/ Forensic Science Institute, Radford University, Radford, VA, 24013, USA
| | - S A Fonseca
- African Centre for Medicolegal Systems, Missing Persons Global Response, International Committee of the Red Cross, 202 East Avenue Sunnyside, Pretoria, South Africa
| | - S K Shako
- Advisor to Chief Justice and President of the Supreme Court, Kenya
| | - I Molefe
- University of Cape Town, South Africa
| |
Collapse
|
2
|
Blau S, Hartman D, Stock A, Leahy F, Leditschke J, Smythe L, Woodford N, Rowbotham S. Moving from the unknown to the known: a multidisciplinary approach to the identification of skeletal remains from Sandy Point, Australia. Forensic Sci Res 2024; 9:owae032. [PMID: 39296867 PMCID: PMC11409877 DOI: 10.1093/fsr/owae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 09/21/2024] Open
Abstract
When human remains are inadvertently located, case-related circumstantial information is used to generate an identification hypothesis, and the preservation of the remains typically informs which identification methods may then be used to validate that hypothesis. What happens, however, when there is no contextual information to generate an identification hypothesis? This paper presents the case of a near-complete human skeleton discovered at Sandy Point in Victoria, Australia. The circumstances of the case did not facilitate an identification hypothesis, and with no hypothesis to triage the identification process, all possible identification methods were employed. Preservation of the individual meant neither a visual nor a fingerprint identification was possible, and the lack of an identification hypothesis meant there was no antemortem reference data to compare with the postmortem DNA or dental information. Consequently, in addition to historical research, novel methods, such as radiocarbon dating and genetic intelligence, were utilized to complement information provided by the forensic anthropology and odontology analyses, which ultimately resulted in the identification. This example highlights the complexity of cases of unidentified skeletal remains and emphasizes the fact that identification is a process that necessarily requires a multidisciplinary and collaborative approach. Key points Human skeletal remains were recovered from Sandy Point, Victoria.The absence of circumstantial information and the poor preservation (i.e. skeletonized) of the remains precluded the formation of an identification hypothesis, rendering the identification process complex.Only through the integration of anthropology, odontology, molecular biology, radiocarbon dating, historical research, and genealogy were the remains able to be identified as Mr. Christopher Luke Moore, who drowned in 1928.Human identification is a process that necessarily requires a multidisciplinary and collaborative approach.
Collapse
Affiliation(s)
- Soren Blau
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
- Department of Forensic Medicine, Monash University, Melbourne, Australia
| | - Dadna Hartman
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
- Department of Forensic Medicine, Monash University, Melbourne, Australia
| | - April Stock
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
| | - Fiona Leahy
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
| | - Jodie Leditschke
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
- Department of Forensic Medicine, Monash University, Melbourne, Australia
| | - Lyndall Smythe
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
- Department of Forensic Medicine, Monash University, Melbourne, Australia
| | - Noel Woodford
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
- Department of Forensic Medicine, Monash University, Melbourne, Australia
| | - Samantha Rowbotham
- Victorian Institute of Forensic Medicine, Monash University, Melbourne, Australia
- Department of Forensic Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Daniel R, Raymond J, Sears A, Stock A, Scudder N, Padmabandu G, Kumar SA, Snedecor J, Antunes J, Hartman D. It's all relative: A multi-generational study using ForenSeq™ Kintelligence. Forensic Sci Int 2024; 364:112208. [PMID: 39232402 DOI: 10.1016/j.forsciint.2024.112208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
The successful application of Forensic Investigative Genetic Genealogy (FIGG) to the identification of unidentified human remains and perpetrators of serious crime has led to a growing interest in its use internationally, including Australia. Routinely, FIGG has relied on the generation of high-density single nucleotide polymorphism (SNP) profiles from forensic samples using whole genome array (WGA) (∼650,000 or more SNPs) or whole genome sequencing (WGS) (millions of SNPs) for DNA segment-based comparisons in commercially available genealogy databases. To date, this approach has required DNA of a quality and quantity that is often not compatible with forensic samples. Furthermore, it requires the management of large data sets that include SNPs of medical relevance. The ForenSeq™ Kintelligence kit, comprising of 10,230 SNPs including 9867 for kinship association, was designed to overcome these challenges using a targeted amplicon sequencing-based method developed for low DNA inputs, inhibited and/or degraded forensic samples. To assess the ability of the ForenSeq™ Kintelligence workflow to correctly predict biological relationships, a comparative study comprising of 12 individuals from a family (with varying degrees of relatedness from 1st to 6th degree relatives) was undertaken using ForenSeq™ Kintelligence and a WGA approach using the Illumina Global Screening Array-24 version 3.0 Beadchip. All expected 1st, 2nd, 3rd, 4th and 5th degree relationships were correctly predicted using ForenSeq™ Kintelligence, while the expected 6th degree relationships were not detected. Given the (often) limited availability of forensic samples, findings from this study will assist Australian Law enforcement and other agencies considering the use of FIGG, to determine if the ForenSeq™ Kintelligence is suitable for existing workflows and casework sample types considered for FIGG.
Collapse
Affiliation(s)
- R Daniel
- Victorian Institute of Forensic Medicine, Victoria, Australia
| | - J Raymond
- Forensic Evidence and Technical Services, New South Wales Police Force, Sydney, Australia
| | - A Sears
- Forensic Evidence and Technical Services, New South Wales Police Force, Sydney, Australia
| | - A Stock
- Victorian Institute of Forensic Medicine, Victoria, Australia
| | - N Scudder
- Australian Federal Police, Canberra, Australian Capital Territory, Australia
| | | | - S A Kumar
- Qiagen HID LLC, Germantown, MD, United States
| | - J Snedecor
- Qiagen HID LLC, Germantown, MD, United States
| | - J Antunes
- Qiagen HID LLC, Germantown, MD, United States
| | - D Hartman
- Victorian Institute of Forensic Medicine, Victoria, Australia; Department of Forensic Medicine, Monash University, Victoria, Australia.
| |
Collapse
|
4
|
Wang M, Chen H, Luo L, Huang Y, Duan S, Yuan H, Tang R, Liu C, He G. Forensic investigative genetic genealogy: expanding pedigree tracing and genetic inquiry in the genomic era. J Genet Genomics 2024:S1673-8527(24)00158-9. [PMID: 38969261 DOI: 10.1016/j.jgg.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Genetic genealogy provides crucial insights into the complex biological relationships within contemporary and ancient human populations by analyzing shared alleles and chromosomal segments that are identical by descent to understand kinship, migration patterns, and population dynamics. Within forensic science, forensic investigative genetic genealogy (FIGG) has gained prominence by leveraging next-generation sequencing technologies and population-specific genomic resources, opening new investigative avenues. In this review, we synthesize current knowledge, underscore recent advancements, and discuss the growing role of FIGG in forensic genomics. FIGG has been pivotal in revitalizing dormant inquiries and offering new genetic leads in numerous cold cases. Its effectiveness relies on the extensive single-nucleotide polymorphism profiles contributed by individuals from diverse populations to specialized genomic databases. Advances in computational genomics and the growth of human genomic databases have spurred a profound shift in the application of genetic genealogy across forensics, anthropology, and ancient DNA studies. As the field progresses, FIGG is evolving from a nascent practice into a more sophisticated and specialized discipline, shaping the future of forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Hongyu Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lintao Luo
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Liu
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan 610041, China; Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610041, China; Anti-Drug Technology Center of Guangdong Province, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
5
|
Guardado M, Perez C, Jackson S, Magaña J, Campana S, Samperio E, Rojas BC, Hernandez S, Syas K, Hernandez R, Zavala EI, Rohlfs R. py_ped_sim - A flexible forward genetic simulator for complex family pedigree analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586501. [PMID: 38585824 PMCID: PMC10996500 DOI: 10.1101/2024.03.25.586501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees. Results We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships. We validated the accuracy of our software by simulating genomes onto diverse family pedigree structures, showing that the estimated kinship coefficients closely approximated expected values. Conclusions py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.
Collapse
Affiliation(s)
- Miguel Guardado
- San Francisco State University, Department of Mathematics, San Francisco CA, 94132, USA
- University of California San Francisco, Biological and Medical Informatics Graduate Program. San Francisco CA, 94158
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA; San Francisco, 94134, CA, USA
- University of Oregon; Department of Data Science; Eugene, OR, 97403, USA
| | - Cynthia Perez
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Shalom Jackson
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Joaquín Magaña
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Sthen Campana
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Emily Samperio
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | | | - Selena Hernandez
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
| | - Kaela Syas
- San Francisco State University, Department of Mathematics, San Francisco CA, 94132, USA
| | - Ryan Hernandez
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA; San Francisco, 94134, CA, USA
| | - Elena I. Zavala
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
- University of California, Berkeley, Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA
| | - Rori Rohlfs
- San Francisco State University, Department of Biology, San Francisco CA, 94132, USA
- University of Oregon; Department of Data Science; Eugene, OR, 97403, USA
| |
Collapse
|
6
|
Miura Y, Hashimoto M, Nakamura Y, Ishikawa N. Investigation of a DNA Profiling Method Using Only Cementum More Than 70 Years After Death. Cureus 2024; 16:e56998. [PMID: 38681342 PMCID: PMC11045671 DOI: 10.7759/cureus.56998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Short tandem repeat (STR) typing is widely used not only for blood relationship identification but also for the personal identification of unidentified bodies. However, DNA is susceptible to the effects of environmental factors, consequently leading to reduced DNA yields. Therefore, to maximize the DNA yield required for identification, teeth are generally completely pulverized during DNA extraction. However, this renders subsequent testing after DNA profiling impossible. In this study, we investigated the utility of DNA profiling using only the cementum from teeth that had been left outdoors for long postmortem intervals. We analyzed 90 molars (fresh teeth) that were extracted within six months at a dental clinic and 90 molars (stale teeth) exposed outdoors for over 70 years, and following cementum extraction, the accuracy of STR profiling, optimal site for cementum collection, and minimum amount of cementum required for STR profiling were determined. The results demonstrated that the profiling accuracy of DNA extracted from cementum was comparable to that of DNA from dental pulp and dentin. Furthermore, the collection of cementum from either near the cervical line or from the root apex areas did not show significant differences in DNA profiling accuracy, indicating that securing at least 5 mg of cementum was sufficient to ensure precise DNA profiling. These findings suggest that DNA profiling using only cementum is viable even in teeth that have been subjected to a long postmortem interval.
Collapse
Affiliation(s)
- Yuna Miura
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| | - Masatsugu Hashimoto
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| | - Yasutaka Nakamura
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College, Chiyoda-ku, JPN
| |
Collapse
|
7
|
Childebayeva A, Zavala EI. Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience 2023; 26:108066. [PMID: 37927550 PMCID: PMC10622734 DOI: 10.1016/j.isci.2023.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Degraded DNA is used to answer questions in the fields of ancient DNA (aDNA) and forensic genetics. While aDNA studies typically center around human evolution and past history, and forensic genetics is often more concerned with identifying a specific individual, scientists in both fields face similar challenges. The overlap in source material has prompted periodic discussions and studies on the advantages of collaboration between fields toward mutually beneficial methodological advancements. However, most have been centered around wet laboratory methods (sampling, DNA extraction, library preparation, etc.). In this review, we focus on the computational side of the analytical workflow. We discuss limitations and considerations to consider when working with degraded DNA. We hope this review provides a framework to researchers new to computational workflows for how to think about analyzing highly degraded DNA and prompts an increase of collaboration between the forensic genetics and aDNA fields.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Elena I. Zavala
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
8
|
Huffman K, Ballantyne J. Single cell genomics applications in forensic science: Current state and future directions. iScience 2023; 26:107961. [PMID: 37876804 PMCID: PMC10590970 DOI: 10.1016/j.isci.2023.107961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Standard methods of mixture analysis involve subjecting a dried crime scene sample to a "bulk" DNA extraction method such that the resulting isolate compromises a homogenized DNA mixture from the individual donors. If, however, instead of bulk DNA extraction, a sufficient number of individual cells from the mixed stain are subsampled prior to genetic analysis then it should be possible to recover highly probative single source, non-mixed scDNA profiles from each of the donors. This approach can detect low DNA level minor donors to a mixture that otherwise would not be identified using standard methods and can also resolve rare mixtures comprising first degree relatives and thereby also prevent the false inclusion of non-donor relatives. This literature landscape review and associated commentary reports on the history and increasing interest in current and potential future applications of scDNA in forensic genomics, and critically evaluates opportunities and impediments to further progress.
Collapse
Affiliation(s)
- Kaitlin Huffman
- Graduate Program in Chemistry, Department of Chemistry, University of Central Florida, PO Box 162366, Orlando, FL 32816-2366, USA
| | - Jack Ballantyne
- National Center for Forensic Science, PO Box 162367, Orlando, FL 32816-2367, USA
- Department of Chemistry, University of Central Florida, PO Box 162366, Orlando, FL 32816-2366, USA
| |
Collapse
|
9
|
Budowle B, Arnette A, Sajantila A. A cost-benefit analysis for use of large SNP panels and high throughput typing for forensic investigative genetic genealogy. Int J Legal Med 2023; 137:1595-1614. [PMID: 37341834 PMCID: PMC10421786 DOI: 10.1007/s00414-023-03029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023]
Abstract
Next-generation sequencing (NGS), also known as massively sequencing, enables large dense SNP panel analyses which generate the genetic component of forensic investigative genetic genealogy (FIGG). While the costs of implementing large SNP panel analyses into the laboratory system may seem high and daunting, the benefits of the technology may more than justify the investment. To determine if an infrastructural investment in public laboratories and using large SNP panel analyses would reap substantial benefits to society, a cost-benefit analysis (CBA) was performed. This CBA applied the logic that an increase of DNA profile uploads to a DNA database due to a sheer increase in number of markers and a greater sensitivity of detection afforded with NGS and a higher hit/association rate due to large SNP/kinship resolution and genealogy will increase investigative leads, will be more effective for identifying recidivists which in turn reduces future victims of crime, and will bring greater safety and security to communities. Analyses were performed for worst case/best case scenarios as well as by simulation sampling the range spaces with multiple input values simultaneously to generate best estimate summary statistics. This study shows that the benefits, both tangible and intangible, over the lifetime of an advanced database system would be huge and can be projected to be for less than $1 billion per year (over a 10-year period) investment can reap on average > $4.8 billion in tangible and intangible cost-benefits per year. More importantly, on average > 50,000 individuals need not become victims if FIGG were employed, assuming investigative associations generated were acted upon. The benefit to society is immense making the laboratory investment a nominal cost. The benefits likely are underestimated herein. There is latitude in the estimated costs, and even if they were doubled or tripled, there would still be substantial benefits gained with a FIGG-based approach. While the data used in this CBA are US centric (primarily because data were readily accessible), the model is generalizable and could be used by other jurisdictions to perform relevant and representative CBAs.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.
- Radford University Forensic Science Institute, Radford University, Radford, VA, USA.
| | - Andrew Arnette
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, USA
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
10
|
Cardinali I, Tancredi D, Lancioni H. The Revolution of Animal Genomics in Forensic Sciences. Int J Mol Sci 2023; 24:ijms24108821. [PMID: 37240167 DOI: 10.3390/ijms24108821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nowadays, the coexistence between humans and domestic animals (especially dogs and cats) has become a common scenario of daily life. Consequently, during a forensic investigation in civil or criminal cases, the biological material from a domestic animal could be considered "evidence" by law enforcement agencies. Animal genomics offers an important contribution in attacks and episodes of property destruction or in a crime scene where the non-human biological material is linked to the victim or perpetrator. However, only a few animal genetics laboratories in the world are able to carry out a valid forensic analysis, adhering to standards and guidelines that ensure the admissibility of data before a court of law. Today, forensic sciences focus on animal genetics considering all domestic species through the analysis of STRs (short tandem repeats) and autosomal and mitochondrial DNA SNPs (single nucleotide polymorphisms). However, the application of these molecular markers to wildlife seems to have gradually gained a strong relevance, aiming to tackle illegal traffic, avoid the loss of biodiversity, and protect endangered species. The development of third-generation sequencing technologies has glimmered new possibilities by bringing "the laboratory into the field", with a reduction of both the enormous cost management of samples and the degradation of the biological material.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
11
|
Yagasaki K, Nishida N, Mabuchi A, Tokunaga K, Fujimoto A. Development of a novel microarray data analysis tool without normalization for genotyping degraded forensic DNA. Forensic Sci Int Genet 2023; 65:102885. [PMID: 37137205 DOI: 10.1016/j.fsigen.2023.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/13/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Since the arrest of the Golden State Killer in the US in April 2018, forensic geneticists have been increasingly interested in the investigative genetic genealogy (IGG) method. While this method has already been in practical use as a powerful tool for criminal investigation, we have yet to know well the limitations and potential risks. In this current study, we performed an evaluation study focusing on degraded DNA using the Affymetrix Genome-Wide Human SNP Array 6.0 platform (Thermo Fisher Scientific). We revealed one of the potential problems that occur during SNP genotype determination using a microarray-based platform. Our analysis results indicated that the SNP profiles derived from degraded DNA contained many false heterozygous SNPs. In addition, it was confirmed that the total amount of probe signal intensity on microarray chips derived from degraded DNA decreased significantly. Because the conventional analysis algorithm performs normalization during genotype determination, we concluded that noise signals could be genotype-called. To address this issue, we proposed a novel microarray data analysis method without normalization (nMAP). Although the nMAP algorithm resulted in a low call rate, it substantially improved genotyping accuracy. Finally, we confirmed the usefulness of the nMAP algorithm for kinship inferences. These findings and the nMAP algorithm will make a contribution to the advance of the IGG method.
Collapse
Affiliation(s)
- Kayoko Yagasaki
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Forensic Science Laboratory, Tokyo Metropolitan Police Department, 3-35-21, Shakujiidai, Nerima Ward, Tokyo 177-0045, Japan.
| | - Nao Nishida
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Akihiko Mabuchi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku word, Tokyo 162-8655, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo Ward, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Budowle B, Sajantila A. Revisiting informed consent in forensic genomics in light of current technologies and the times. Int J Legal Med 2023; 137:551-565. [PMID: 36642749 PMCID: PMC9902322 DOI: 10.1007/s00414-023-02947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/14/2022] [Indexed: 01/17/2023]
Abstract
Informed consent is based on basic ethical principles that should be considered when conducting biomedical and behavioral research involving human subjects. These principles-respect, beneficence, and justice-form the foundations of informed consent which in itself is grounded on three fundamental elements: information, comprehension, and voluntary participation. While informed consent has focused on human subjects and research, the practice has been adopted willingly in the forensic science arena primarily to acquire reference samples from family members to assist in identifying missing persons. With advances in molecular biology technologies, data mining, and access to metadata, it is important to assess whether the past informed consent process and in particular associated risks are concomitant with these increased capabilities. Given the state-of-the-art, areas in which informed consent may need to be modified and augmented are as follows: reference samples from family members in missing persons or unidentified human remains cases; targeted analysis of an individual(s) during forensic genetic genealogy cases to reduce an investigative burden; donors who provide their samples for validation studies (to include population studies and entry into databases that would be applied to forensic statistical calculations) to support implementation of procedures and operations of the forensic laboratory; family members that may contribute samples or obtain genetic information from a molecular autopsy; and use of medical and other acquired samples that could be informative for identification purposes. The informed consent process should cover (1) purpose for collection of samples; (2) process to analyze the samples (to include type of data); (3) benefits (to donor, target, family, community, etc. as applicable); (4) risks (to donor, target, family, community, etc. as applicable); (5) access to data/reports by the donor; (6) sample disposition; (7) removal of data process (i.e., expungement); (8) process to ask questions/assessment of comprehension; (9) follow-up processes; and (10) voluntary, signed, and dated consent. Issues surrounding these topics are discussed with an emphasis on addressing risk factors. Addressing informed consent will allow human subjects to make decisions voluntarily and with autonomy as well as secure the use of samples for intended use.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
13
|
Syukriani Y, Wulandari AS, Wanranto B, Hidayat Y. Thousands of years of Malay and Chinese population history in Indonesia and its implication on Paternity Index in DNA paternity testing. Sci Justice 2023; 63:229-237. [PMID: 36870702 DOI: 10.1016/j.scijus.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The existence of the Chinese population in the predominantly Malay population in Indonesia can be traced back thousands of years, and it has been suspected that it played an essential role in the history of the Malay population origin in Maritime South East Asia. With the fact that the Malay-Indonesian population is currently predominant compared to the Chinese population in Indonesia (Chinese-Indonesian), the selection of the origin of the STRs allele frequency panel population becomes an issue in DNA profiling, including in paternity testing. This study analyses the genetic relationship between the Chinese-Indonesian and Malay-Indonesian populations and how this affects the Paternity Index (PI) calculation in paternity test cases. The study of the relationship between populations was carried out using neighbour-joining (NJ) tree analysis and multidimensional scaling (MDS) on the allele frequency panel of 19 autosomal STRs loci of Malay-Indonesian (n = 210) and Chinese-Indonesian (n = 78) populations. Four population groups were used as references: Malay-Malaysian, Filipino, Chinese, and Caucasian. An MDS analysis was also performed based on the pairwise FST calculation. The combined Paternity Index (CPI) calculation was carried out on 132 paternity cases from the Malay-Indonesian population with inclusive results using a panel of allele frequencies from the six populations. The pairwise FST MDS indicates a closer relationship between the Chinese-Indonesian and Malay-Indonesian compared to the Chinese population, which is in line with the CPIs comparison test. The outcome suggests that the alternative use of allele frequency database between Malay-Indonesian and Chinese-Indonesian for CPI calculations is not very influential. These results can also be considered in studying the extent of genetic assimilation between the two populations. In addition, these results support the robustness claim of multivariate analysis to represent phenomena that phylogenetic analyses may not be able to demonstrate, especially for massive panel data.
Collapse
Affiliation(s)
- Yoni Syukriani
- Department of Forensic and Legal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
| | - Ari Sri Wulandari
- Department of Forensic and Legal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Busyra Wanranto
- Department of Forensic and Legal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Yuyun Hidayat
- Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
14
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
15
|
Snedecor J, Fennell T, Stadick S, Homer N, Antunes J, Stephens K, Holt C. Fast and Accurate Kinship Estimation Using Sparse SNPs in Relatively Large Database Searches. Forensic Sci Int Genet 2022; 61:102769. [DOI: 10.1016/j.fsigen.2022.102769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
|
16
|
Practical forensic use of kinship determination using high-density SNP profiling based on a microarray platform, focusing on low-quantity DNA. Forensic Sci Int Genet 2022; 61:102752. [DOI: 10.1016/j.fsigen.2022.102752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
|
17
|
Jobling MA. Forensic genetics through the lens of Lewontin: population structure, ancestry and race. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200422. [PMID: 35430883 PMCID: PMC9014189 DOI: 10.1098/rstb.2020.0422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
In his famous 1972 paper, Richard Lewontin used 'classical' protein-based markers to show that greater than 85% of human genetic diversity was contained within, rather than between, populations. At that time, these same markers also formed the basis of forensic technology aiming to identify individuals. This review describes the evolution of forensic genetic methods into DNA profiling, and how the field has accounted for the apportionment of genetic diversity in considering the weight of forensic evidence. When investigative databases fail to provide a match to a crime-scene profile, specific markers can be used to seek intelligence about a suspect: these include inferences on population of origin (biogeographic ancestry) and externally visible characteristics, chiefly pigmentation of skin, hair and eyes. In this endeavour, ancestry and phenotypic variation are closely entangled. The markers used show patterns of inter- and intrapopulation diversity that are very atypical compared to the genome as a whole, and reinforce an apparent link between ancestry and racial divergence that is not systematically present otherwise. Despite the legacy of Lewontin's result, therefore, in a major area in which genetics coincides with issues of public interest, methods tend to exaggerate human differences and could thereby contribute to the reification of biological race. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- Mark A. Jobling
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
18
|
Wickenheiser RA. Expanding DNA database effectiveness. Forensic Sci Int Synerg 2022; 4:100226. [PMID: 35402888 PMCID: PMC8991311 DOI: 10.1016/j.fsisyn.2022.100226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 06/01/2023]
Abstract
DNA databases effectively develop investigative leads, with database size being directly proportional to increased chances of solving crimes as demonstrated by a business case including a universal STR database example. DNA database size can be expanded physically by increasing the number and type of qualifying offenses, adding arrestees, or moving towards a universal database. The theoretical size of a DNA database can also be increased scientifically by using the inherent nature of DNA sharing by biologically related individuals by using an indirect matching strategy including Partial Matching, Familial Searching, and Investigative Genetic Genealogy (IGG). A new strategy is introduced using areas of shared DNA as a search key to locate potential relatives for further kinship evaluation. New search key strategies include Y-STR, mtDNA, and X Chromosome searching to locate potential relatives, coupled with kinship and genetic genealogical research, as well as expanded use of unidentified human remains (UHRs).
Collapse
|
19
|
Forensic Genetic Genealogy using microarrays for the identification of human remains: the need for good quality samples – a pilot study. Forensic Sci Int 2022; 334:111242. [DOI: 10.1016/j.forsciint.2022.111242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 11/20/2022]
|
20
|
|
21
|
Biesecker LG, Green ED, Manolio T, Solomon BD, Curtis D. Should all babies have their genome sequenced at birth? BMJ 2021; 375:n2679. [PMID: 34789511 DOI: 10.1136/bmj.n2679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Eric D Green
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Teri Manolio
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | | | - David Curtis
- UCL Genetics Institute, University College London, UK
- Centre for Psychiatry, Queen Mary University of London, UK
| |
Collapse
|
22
|
de Vries JH, Kling D, Vidaki A, Arp P, Kalamara V, Verbiest MMPJ, Piniewska-Róg D, Parsons TJ, Uitterlinden AG, Kayser M. Impact of SNP microarray analysis of compromised DNA on kinship classification success in the context of investigative genetic genealogy. Forensic Sci Int Genet 2021; 56:102625. [PMID: 34753062 DOI: 10.1016/j.fsigen.2021.102625] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/04/2022]
Abstract
Single nucleotide polymorphism (SNP) data generated with microarray technologies have been used to solve murder cases via investigative leads obtained from identifying relatives of the unknown perpetrator included in accessible genomic databases, an approach referred to as investigative genetic genealogy (IGG). However, SNP microarrays were developed for relatively high input DNA quantity and quality, while DNA typically obtainable from crime scene stains is of low DNA quantity and quality, and SNP microarray data obtained from compromised DNA are largely missing. By applying the Illumina Global Screening Array (GSA) to 264 DNA samples with systematically altered quantity and quality, we empirically tested the impact of SNP microarray analysis of compromised DNA on kinship classification success, as relevant in IGG. Reference data from manufacturer-recommended input DNA quality and quantity were used to estimate genotype accuracy in the compromised DNA samples and for simulating data of different degree relatives. Although stepwise decrease of input DNA amount from 200 ng to 6.25 pg led to decreased SNP call rates and increased genotyping errors, kinship classification success did not decrease down to 250 pg for siblings and 1st cousins, 1 ng for 2nd cousins, while at 25 pg and below kinship classification success was zero. Stepwise decrease of input DNA quality via increased DNA fragmentation resulted in the decrease of genotyping accuracy as well as kinship classification success, which went down to zero at the average DNA fragment size of 150 base pairs. Combining decreased DNA quantity and quality in mock casework and skeletal samples further highlighted possibilities and limitations. Overall, GSA analysis achieved maximal kinship classification success from 800 to 200 times lower input DNA quantities than manufacturer-recommended, although DNA quality plays a key role too, while compromised DNA produced false negative kinship classifications rather than false positive ones.
Collapse
Affiliation(s)
- Jard H de Vries
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Daniel Kling
- Department of Forensic Genetics and Toxicology, National Board of Forensic Medicine, Artillerigatan 12, 587 58 Linköping, Sweden
| | - Athina Vidaki
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Pascal Arp
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Vivian Kalamara
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Michael M P J Verbiest
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Danuta Piniewska-Róg
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; Department of Forensic Medicine, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Thomas J Parsons
- International Commission on Missing Persons, Koninginnegracht 12a, 2514 AA Den Haag, the Netherlands
| | - André G Uitterlinden
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Epidemiology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Manfred Kayser
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
23
|
Oosthuizen T, Howes LM. The development of forensic DNA analysis: New debates on the issue of fundamental human rights. Forensic Sci Int Genet 2021; 56:102606. [PMID: 34710822 DOI: 10.1016/j.fsigen.2021.102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Before the advent of forensic DNA profiling, forensic techniques such as fingerprint examination and blood type comparison were used in the identification of suspects. DNA profiling has since become the gold standard of forensic science, and forensic DNA analysis techniques continue to evolve. Recent developments such as familial searching and phenotyping have raised ethical questions and concerns reflecting those expressed in the late 1980s when forensic DNA analysis was first introduced. At that time, attempts to use DNA evidence in criminal trials were met with challenges to its evidential value and admissibility. A common concern was whether the probative value of the evidence would outweigh its potentially prejudicial effect. This gave rise to a complex three-way debate, which revolved around first, the admissibility of the scientific principles in criminal courts; second, the scientific process involved in analysing DNA samples; and third, the impact that forensic DNA analysis may have on fundamental human rights. Ultimately, debates about the scientific process and the admissibility of such evidence in criminal trials overshadowed the debate about potential infringements of fundamental human rights. This resulted in a lack of critical discussion around the erosion of civil liberties through the use of scientific technologies. This paper revisits the early debates on the development of forensic DNA analysis. It draws parallels with current developments and analyses the potential for current and future human rights infringements, highlighting that the libertarian model offers a necessary counterbalance to the other arguments, due to its concern for maintaining fundamental rights.
Collapse
Affiliation(s)
- Tersia Oosthuizen
- University of Tasmania, Law and Education, College of Arts, School of Social Sciences, Private Bag 22, Hobart 7001, Tasmania, Australia.
| | - Loene M Howes
- University of Tasmania, Law and Education, College of Arts, School of Social Sciences, Private Bag 22, Hobart 7001, Tasmania, Australia.
| |
Collapse
|
24
|
Karim N, Plott TJ, Durbin-Johnson BP, Rocke DM, Salemi M, Phinney BS, Goecker ZC, Pieterse MJM, Parker GJ, Rice RH. Elucidation of familial relationships using hair shaft proteomics. Forensic Sci Int Genet 2021; 54:102564. [PMID: 34315035 DOI: 10.1016/j.fsigen.2021.102564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023]
Abstract
This study examines the potential of hair shaft proteomic analysis to delineate genetic relatedness. Proteomic profiling and amino acid sequence analysis provide information for quantitative and statistically-based analysis of individualization and sample similarity. Protein expression levels are a function of cell-specific transcriptional and translational programs. These programs are greatly influenced by an individual's genetic background, and are therefore influenced by familial relatedness as well as ancestry and genetic disease. Proteomic profiles should therefore be more similar among related individuals than unrelated individuals. Likewise, profiles of genetically variant peptides that contain single amino acid polymorphisms, the result of non-synonymous SNP alleles, should behave similarly. The proteomically-inferred SNP alleles should also provide a basis for calculation of combined paternity and sibship indices. We test these hypotheses using matching proteomic and genetic datasets from a family of two adults and four siblings, one of which has a genetic condition that perturbs hair structure and properties. We demonstrate that related individuals, compared to those who are unrelated, have more similar proteomic profiles, profiles of genetically variant peptides and higher combined paternity indices and combined sibship indices. This study builds on previous analyses of hair shaft protein profiling and genetically variant peptide profiles in different real-world scenarios including different human hair shaft body locations and pigmentation status. It also validates the inclusion of proteomic information with other biomolecular substrates in forensic hair shaft analysis, including mitochondrial and nuclear DNA.
Collapse
Affiliation(s)
- Noreen Karim
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Tempest J Plott
- Department of Environmental Toxicology, University of California, Davis, USA; Forensic Science Program, University of California, Davis, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational, Science Center Biostatistics Core, University of California, Davis, USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, Clinical and Translational, Science Center Biostatistics Core, University of California, Davis, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, USA
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, USA
| | - Zachary C Goecker
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Marc J M Pieterse
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Glendon J Parker
- Department of Environmental Toxicology, University of California, Davis, USA; Forensic Science Program, University of California, Davis, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, USA; Forensic Science Program, University of California, Davis, USA
| |
Collapse
|