1
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
2
|
Dennis EM, Garcia DM. Biochemical Principles in Prion-Based Inheritance. EPIGENOMES 2022; 6:4. [PMID: 35225957 PMCID: PMC8883993 DOI: 10.3390/epigenomes6010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Prions are proteins that can stably fold into alternative structures that frequently alter their activities. They can self-template their alternate structures and are inherited across cell divisions and generations. While they have been studied for more than four decades, their enigmatic nature has limited their discovery. In the last decade, we have learned just how widespread they are in nature, the many beneficial phenotypes that they confer, while also learning more about their structures and modes of inheritance. Here, we provide a brief review of the biochemical principles of prion proteins, including their sequences, characteristics and structures, and what is known about how they self-template, citing examples from multiple organisms. Prion-based inheritance is the most understudied segment of epigenetics. Here, we lay a biochemical foundation and share a framework for how to define these molecules, as new examples are unearthed throughout nature.
Collapse
Affiliation(s)
- Emily M. Dennis
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA;
| | - David M. Garcia
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Garcia DM, Campbell EA, Jakobson CM, Tsuchiya M, Shaw EA, DiNardo AL, Kaeberlein M, Jarosz DF. A prion accelerates proliferation at the expense of lifespan. eLife 2021; 10:e60917. [PMID: 34545808 PMCID: PMC8455135 DOI: 10.7554/elife.60917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation-such as mutations or chemicals that interfere with growth regulatory pathways-can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.
Collapse
Affiliation(s)
- David M Garcia
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Edgar A Campbell
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Christopher M Jakobson
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | - Ethan A Shaw
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Acadia L DiNardo
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, United States
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
5
|
Zajkowski T, Lee MD, Mondal SS, Carbajal A, Dec R, Brennock PD, Piast RW, Snyder JE, Bense NB, Dzwolak W, Jarosz DF, Rothschild LJ. The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements. Mol Biol Evol 2021; 38:2088-2103. [PMID: 33480998 DOI: 10.1093/molbev/msab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions, proteins that can convert between structurally and functionally distinct states and serve as non-Mendelian mechanisms of inheritance, were initially discovered and only known in eukaryotes, and consequently considered to likely be a relatively late evolutionary acquisition. However, the recent discovery of prions in bacteria and viruses has intimated a potentially more ancient evolutionary origin. Here, we provide evidence that prion-forming domains exist in the domain archaea, the last domain of life left unexplored with regard to prions. We searched for archaeal candidate prion-forming protein sequences computationally, described their taxonomic distribution and phylogeny, and analyzed their associated functional annotations. Using biophysical in vitro assays, cell-based and microscopic approaches, and dye-binding analyses, we tested select candidate prion-forming domains for prionogenic characteristics. Out of the 16 tested, eight formed amyloids, and six acted as protein-based elements of information transfer driving non-Mendelian patterns of inheritance. We also identified short peptides from our archaeal prion candidates that can form amyloid fibrils independently. Lastly, candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, an observation that may help future archaeal prion predictions. Taken together, our discovery of functional prion-forming domains in archaea provides evidence that multiple archaeal proteins are capable of acting as prions-thus expanding our knowledge of this epigenetic phenomenon to the third and final domain of life and bolstering the possibility that they were present at the time of the last universal common ancestor.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,University Space Research Association, Mountain View, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Shamba S Mondal
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Amanda Carbajal
- University Space Research Association, Mountain View, CA, USA.,University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Radoslaw W Piast
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | | | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
6
|
Chen YR, Ziv I, Swaminathan K, Elias JE, Jarosz DF. Protein aggregation and the evolution of stress resistance in clinical yeast. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200127. [PMID: 33866806 DOI: 10.1098/rstb.2020.0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation, particularly in its prion-like form, has long been thought to be detrimental. However, recent studies have identified multiple instances where protein aggregation is important for normal physiological functions. Combining mass spectrometry and cell biological approaches, we developed a strategy for the identification of protein aggregates in cell lysates. We used this approach to characterize prion-based traits in pathogenic strains of the yeast Saccharomyces cerevisiae isolated from immunocompromised human patients. The proteins that we found, including the metabolic enzyme Cdc19, the translation elongation factor Yef3 and the fibrillarin homologue Nop1, are known to assemble under certain physiological conditions. Yet, such assemblies have not been reported to be stable or heritable. Our data suggest that some proteins which aggregate in response to stress have the capacity to acquire diverse assembled states, certain ones of which can be propagated across generations in a form of protein-based epigenetics. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Kavya Swaminathan
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons. Int J Mol Sci 2020; 22:ijms22010090. [PMID: 33374854 PMCID: PMC7794690 DOI: 10.3390/ijms22010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud.
Collapse
|
8
|
Oamen HP, Lau Y, Caudron F. Prion-like proteins as epigenetic devices of stress adaptation. Exp Cell Res 2020; 396:112262. [DOI: 10.1016/j.yexcr.2020.112262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 01/03/2023]
|
9
|
Walker GA, Henderson CM, Luong P, Block DE, Bisson LF. Downshifting Yeast Dominance: Cell Physiology and Phospholipid Composition Are Altered With Establishment of the [ GAR +] Prion in Saccharomyces cerevisiae. Front Microbiol 2020; 11:2011. [PMID: 32983023 PMCID: PMC7477300 DOI: 10.3389/fmicb.2020.02011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Establishment of the [GAR +] prion in Saccharomyces cerevisiae reduces both transcriptional expression of the HXT3 hexose transporter gene and fermentation capacity in high sugar conditions. We evaluated the impact of deletion of the HXT3 gene on the expression of [GAR +] prion phenotype in a vineyard isolate, UCD932, and found that changes in fermentation capacity were observable even with complete loss of the Hxt3 transporter, suggesting other cellular functions affecting fermentation rate may be impacted in [GAR +] strains. In a comparison of isogenic [GAR +] and [gar -] strains, localization of the Pma1 plasma membrane ATPase showed differences in distribution within the membrane. In addition, plasma membrane lipid composition varied between the two cell types. Oxygen uptake was decreased in prion induced cells suggesting membrane changes affect plasma membrane functionality beyond glucose transport. Thus, multiple cell surface properties are altered upon induction of the [GAR +] prion in addition to changes in expression of the HXT3 gene. We propose a model wherein [GAR +] prion establishment within a yeast population is associated with modulation of plasma membrane functionality, fermentation capacity, niche dominance, and cell physiology to facilitate growth and mitigate cytotoxicity under certain environmental conditions. Down-regulation of expression of the HXT3 hexose transporter gene is only one component of a suite of physiological differences. Our data show the [GAR +] prion state is accompanied by multiple changes in the yeast cell surface that prioritize population survivability over maximizing metabolic capacity and enable progeny to establish an alternative adaptive state while maintaining reversibility.
Collapse
Affiliation(s)
- Gordon A Walker
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Clark M Henderson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Peter Luong
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - David E Block
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Bartle L, Sumby K, Sundstrom J, Jiranek V. The microbial challenge of winemaking: yeast-bacteria compatibility. FEMS Yeast Res 2020; 19:5513997. [PMID: 31187141 DOI: 10.1093/femsyr/foz040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
The diversity and complexity of wine environments present challenges for predicting success of fermentation. In particular, compatibility between yeast and lactic acid bacteria is affected by chemical and physical parameters that are strain and cultivar specific. This review focuses on the impact of compound production by microbes and physical interactions between microbes that ultimately influence how yeast and bacteria may work together during fermentation. This review also highlights the importance of understanding microbial interactions for yeast-bacteria compatibility in the wine context.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Krista Sumby
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Joanna Sundstrom
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
11
|
Dixson JD, Azad RK. Prions: Roles in Development and Adaptive Evolution. J Mol Evol 2020; 88:427-434. [PMID: 32388713 DOI: 10.1007/s00239-020-09944-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Prions are often considered as anomalous proteins associated primarily with disease rather than as a fundamental source of diversity within biological proteomes. Whereas this longstanding viewpoint has its genesis in the discovery of the original namesake prions as causative agents of several complex diseases, the underlying assumption of a strict disease basis for prions could not be further from the truth. Prions and the spectrum of functions they comprise, likely represent one of the largest paradigm shifts concerning molecular-encoded phenotypic diversity since identification of DNA as the principle molecule of heredity. The ability of prions to recruit similar proteins to alternate conformations may engender a reservoir of diversity supplementing the genetic diversity resulting from stochastic mutations of DNA and subsequent natural selection. Here we present several currently known prions and how many of their functions as well as modes of transmission are intricately linked to adaptation from an evolutionary perspective. Further, the stability of some prion conformations across generations indicates that heritable prion-based adaptation is a reality.
Collapse
Affiliation(s)
- Jamie D Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
12
|
Chakravarty AK, Smejkal T, Itakura AK, Garcia DM, Jarosz DF. A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Mol Cell 2019; 77:251-265.e9. [PMID: 31757755 PMCID: PMC6980676 DOI: 10.1016/j.molcel.2019.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Spatiotemporal gene regulation is often driven by RNA-binding proteins that harbor long intrinsically disordered regions in addition to folded RNA-binding domains. We report that the disordered region of the evolutionarily ancient developmental regulator Vts1/Smaug drives self-assembly into gel-like condensates. These proteinaceous particles are not composed of amyloid, yet they are infectious, allowing them to act as a protein-based epigenetic element: a prion [SMAUG+]. In contrast to many amyloid prions, condensation of Vts1 enhances its function in mRNA decay, and its self-assembly properties are conserved over large evolutionary distances. Yeast cells harboring [SMAUG+] downregulate a coherent network of mRNAs and exhibit improved growth under nutrient limitation. Vts1 condensates formed from purified protein can transform naive cells to acquire [SMAUG+]. Our data establish that non-amyloid self-assembly of RNA-binding proteins can drive a form of epigenetics beyond the chromosome, instilling adaptive gene expression programs that are heritable over long biological timescales.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Tina Smejkal
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Alan K Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - David M Garcia
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods. FEMS Yeast Res 2019; 19:5553466. [DOI: 10.1093/femsyr/foz061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Microbial communities of yeast and bacterial cells are often observed in the manufacturing processes of fermented foods and drinks, such as sourdough bread, cheese, kefir, wine and sake. Community interactions and dynamics among microorganisms, as well as their significance during the manufacturing processes, are central issues in modern food microbiology. Recent studies demonstrated that the emergence of a yeast prion termed [GAR+] in Saccharomyces cerevisiae is induced by coculturing with bacterial cells, resulting in the switching of the carbon metabolism. In order to facilitate mutualistic symbiosis among microorganisms, this mode of microbial interaction is induced between yeasts and lactic acid bacteria species used in traditional sake making. Thus, yeast prions have attracted much attention as novel platforms that govern the metabolic adaptation of cross-kingdom ecosystems. Our minireview focuses on the plausible linkage between fermented-food microbial communication and yeast prion-mediated metabolic reprogramming.
Collapse
|
14
|
Allwein B, Kelly C, Kammoonah S, Mayor T, Cameron DM. Prion-dependent proteome remodeling in response to environmental stress is modulated by prion variant and genetic background. Prion 2019; 13:53-64. [PMID: 30773982 PMCID: PMC6422386 DOI: 10.1080/19336896.2019.1583041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A number of fungal proteins are capable of adopting multiple alternative, self-perpetuating prion conformations. These prion variants are associated with functional alterations of the prion-forming protein and thus the generation of new, heritable traits that can be detrimental or beneficial. Here we sought to determine the extent to which the previously-reported ZnCl2-sensitivity trait of yeast harboring the [PSI+] prion is modulated by genetic background and prion variant, and whether this trait is accompanied by prion-dependent proteomic changes that could illuminate its physiological basis. We also examined the degree to which prion variant and genetic background influence other prion-dependent phenotypes. We found that ZnCl2 exposure not only reduces colony growth but also limits chronological lifespan of [PSI+] relative to [psi−] cells. This reduction in viability was observed for multiple prion variants in both the S288C and W303 genetic backgrounds. Quantitative proteomic analysis revealed that under exposure to ZnCl2 the expression of stress response proteins was elevated and the expression of proteins involved in energy metabolism was reduced in [PSI+] relative to [psi−] cells. These results suggest that cellular stress and slowed growth underlie the phenotypes we observed. More broadly, we found that prion variant and genetic background modulate prion-dependent changes in protein abundance and can profoundly impact viability in diverse environments. Thus, access to a constellation of prion variants combined with the accumulation of genetic variation together have the potential to substantially increase phenotypic diversity within a yeast population, and therefore to enhance its adaptation potential in changing environmental conditions.
Collapse
Affiliation(s)
- Ben Allwein
- a Department of Biology , Ursinus College , Collegeville , PA , USA
| | - Christina Kelly
- a Department of Biology , Ursinus College , Collegeville , PA , USA
| | - Shaima Kammoonah
- b Department of Biochemistry and Molecular Biology, Michael Smith Laboratories , University of British Columbia , Vancouver , British Columbia , Canada
| | - Thibault Mayor
- b Department of Biochemistry and Molecular Biology, Michael Smith Laboratories , University of British Columbia , Vancouver , British Columbia , Canada
| | - Dale M Cameron
- a Department of Biology , Ursinus College , Collegeville , PA , USA
| |
Collapse
|
15
|
Tuite MF. Yeast models of neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:351-379. [DOI: 10.1016/bs.pmbts.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Chakravarty AK, Jarosz DF. More than Just a Phase: Prions at the Crossroads of Epigenetic Inheritance and Evolutionary Change. J Mol Biol 2018; 430:4607-4618. [PMID: 30031007 DOI: 10.1016/j.jmb.2018.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
A central tenet of molecular biology is that heritable information is stored in nucleic acids. However, this paradigm has been overturned by a group of proteins called "prions." Prion proteins, many of which are intrinsically disordered, can adopt multiple conformations, at least one of which has the capacity to self-template. This unusual folding landscape drives a form of extreme epigenetic inheritance that can be stable through both mitotic and meiotic cell divisions. Although the first prion discovered-mammalian PrP-is the causative agent of debilitating neuropathies, many additional prions have now been identified that are not obviously detrimental and can even be adaptive. Intrinsically disordered regions, which endow proteins with the bulk property of "phase-separation," can also be drivers of prion formation. Indeed, many protein domains that promote phase separation have been described as prion-like. In this review, we describe how prions lie at the crossroads of phase separation, epigenetic inheritance, and evolutionary adaptation.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, United States
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, United States; Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, United States.
| |
Collapse
|
17
|
Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, Hyman AA, Alberti S. Phase separation of a yeast prion protein promotes cellular fitness. Science 2018. [DOI: 10.1126/science.aao5654 eaao5654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biophysical responses of proteins to stress
Much recent work has focused on liquid-liquid phase separation as a cellular response to changing physicochemical conditions. Because phase separation responds critically to small changes in conditions such as pH, temperature, or salt, it is in principle an ideal way for a cell to measure and respond to changes in the environment. Small pH changes could, for instance, induce phase separation of compartments that store, protect, or inactivate proteins. Franzmann
et al.
used the yeast translation termination factor Sup35 as a model for a phase separation–induced stress response. Lowering the pH induced liquid-liquid phase separation of Sup35. The resulting liquid compartments subsequently hardened into gels, which sequestered the termination factor. Raising the pH triggered dissolution of the gels, concomitant with translation restart. Protecting Sup35 in gels could provide a fitness advantage to recovering yeast cells that must restart the translation machinery after stress.
Science
, this issue p.
eaao5654
Collapse
Affiliation(s)
- Titus M. Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Biotec, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Andrei Pozniakovsky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Julia Mahamid
- European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alex S. Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stephan W. Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Biotec, Technische Universität Dresden, Tatzberg 47/48, 01307 Dresden, Germany
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
18
|
Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, Hyman AA, Alberti S. Phase separation of a yeast prion protein promotes cellular fitness. Science 2018; 359:359/6371/eaao5654. [DOI: 10.1126/science.aao5654] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Despite the important role of prion domains in neurodegenerative disease, their physiological function has remained enigmatic. Previous work with yeast prions has defined prion domains as sequences that form self-propagating aggregates. Here, we uncovered an unexpected function of the canonical yeast prion protein Sup35. In stressed conditions, Sup35 formed protective gels via pH-regulated liquid-like phase separation followed by gelation. Phase separation was mediated by the N-terminal prion domain and regulated by the adjacent pH sensor domain. Phase separation promoted yeast cell survival by rescuing the essential Sup35 translation factor from stress-induced damage. Thus, prion-like domains represent conserved environmental stress sensors that facilitate rapid adaptation in unstable environments by modifying protein phase behavior.
Collapse
|
19
|
Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell 2017; 171:1001-1014. [PMID: 29149602 DOI: 10.1016/j.cell.2017.10.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
Protein conformational states-from intrinsically disordered ensembles to amyloids that underlie the self-templating, infectious properties of prion-like proteins-have attracted much attention. Here, we highlight the diversity, including differences in biophysical properties, that drive distinct biological functions and pathologies among self-templating proteins. Advances in chemical genomics, gene editing, and model systems now permit deconstruction of the complex interplay between these protein states and the host factors that react to them. These methods reveal that conformational switches modulate normal and abnormal information transfer and that intimate relationships exist between the intrinsic function of proteins and the deleterious consequences of their misfolding.
Collapse
|
20
|
Wang K, Melki R, Kabani M. A prolonged chronological lifespan is an unexpected benefit of the [PSI+] prion in yeast. PLoS One 2017; 12:e0184905. [PMID: 28910422 PMCID: PMC5599042 DOI: 10.1371/journal.pone.0184905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
Self-replicating ‘proteinaceous infectious particles’ or prions are responsible for complex heritable traits in the yeast Saccharomyces cerevisiae. Our current understanding of the biology of yeast prions stems from studies mostly done in the context of actively dividing cells in optimal laboratory growth conditions. Evidence suggest that fungal prions exist in the wild where most cells are in a non-dividing quiescent state, because of imperfect growth conditions, scarcity of nutrients and competition. We know little about the faithful transmission of yeast prions in such conditions and their physiological consequences throughout the lifespan of yeast cells. We addressed this issue for the [PSI+] prion that results from the self-assembly of the translation release factor Sup35p into insoluble fibrillar aggregates. [PSI+] leads to increased nonsense suppression and confers phenotypic plasticity in response to environmental fluctuations. Here, we report that while [PSI+] had little to no effect on growth per se, it dramatically improved the survival of yeast cells in stationary phase. Remarkably, prolonged chronological lifespan persisted even after [PSI+] was cured from the cells, suggesting that prions may facilitate the acquisition of complex new traits. Such an important selective advantage may contribute to the evolutionary conservation of the prion-forming ability of Sup35p orthologues in distantly related yeast species.
Collapse
Affiliation(s)
- Kai Wang
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (MK); (RM)
| | - Mehdi Kabani
- Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (MK); (RM)
| |
Collapse
|
21
|
Chan PHW, Lee L, Kim E, Hui T, Stoynov N, Nassar R, Moksa M, Cameron DM, Hirst M, Gsponer J, Mayor T. The [PSI +] yeast prion does not wildly affect proteome composition whereas selective pressure exerted on [PSI +] cells can promote aneuploidy. Sci Rep 2017; 7:8442. [PMID: 28814753 PMCID: PMC5559586 DOI: 10.1038/s41598-017-07999-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
The yeast Sup35 protein is a subunit of the translation termination factor, and its conversion to the [PSI +] prion state leads to more translational read-through. Although extensive studies have been done on [PSI +], changes at the proteomic level have not been performed exhaustively. We therefore used a SILAC-based quantitative mass spectrometry approach and identified 4187 proteins from both [psi -] and [PSI +] strains. Surprisingly, there was very little difference between the two proteomes under standard growth conditions. We found however that several [PSI +] strains harbored an additional chromosome, such as chromosome I. Albeit, we found no evidence to support that [PSI +] induces chromosomal instability (CIN). Instead we hypothesized that the selective pressure applied during the establishment of [PSI +]-containing strains could lead to a supernumerary chromosome due to the presence of the ade1-14 selective marker for translational read-through. We therefore verified that there was no prevalence of disomy among newly generated [PSI +] strains in absence of strong selection pressure. We also noticed that low amounts of adenine in media could lead to higher levels of mitochondrial DNA in [PSI +] in ade1-14 cells. Our study has important significance for the establishment and manipulation of yeast strains with the Sup35 prion.
Collapse
Affiliation(s)
- Patrick H W Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Lee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Erin Kim
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Tony Hui
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Roy Nassar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dale M Cameron
- Department of Biology, Ursinus College, Pennsylvania, USA
| | - Martin Hirst
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Joerg Gsponer
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
22
|
Abstract
Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the "protein-only" nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.
Collapse
|
23
|
Ramakrishnan V, Walker GA, Fan Q, Ogawa M, Luo Y, Luong P, Joseph CML, Bisson LF. Inter-Kingdom Modification of Metabolic Behavior: [GAR+] Prion Induction in Saccharomyces cerevisiae Mediated by Wine Ecosystem Bacteria. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S, Jarosz DF. Intrinsically Disordered Proteins Drive Emergence and Inheritance of Biological Traits. Cell 2016; 167:369-381.e12. [PMID: 27693355 DOI: 10.1016/j.cell.2016.09.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/17/2016] [Accepted: 09/07/2016] [Indexed: 11/26/2022]
Abstract
Prions are a paradigm-shifting mechanism of inheritance in which phenotypes are encoded by self-templating protein conformations rather than nucleic acids. Here, we examine the breadth of protein-based inheritance across the yeast proteome by assessing the ability of nearly every open reading frame (ORF; ∼5,300 ORFs) to induce heritable traits. Transient overexpression of nearly 50 proteins created traits that remained heritable long after their expression returned to normal. These traits were beneficial, had prion-like patterns of inheritance, were common in wild yeasts, and could be transmitted to naive cells with protein alone. Most inducing proteins were not known prions and did not form amyloid. Instead, they are highly enriched in nucleic acid binding proteins with large intrinsically disordered domains that have been widely conserved across evolution. Thus, our data establish a common type of protein-based inheritance through which intrinsically disordered proteins can drive the emergence of new traits and adaptive opportunities.
Collapse
Affiliation(s)
| | - James S Byers
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sandra Jones
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David M Garcia
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bhupinder Bhullar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Amelia Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard She
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Laura Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Brayon Fremin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; HHMI and Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Daniel F Jarosz
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Protein aggregation as a mechanism of adaptive cellular responses. Curr Genet 2016; 62:711-724. [DOI: 10.1007/s00294-016-0596-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/26/2022]
|
26
|
Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 2016; 1647:9-18. [PMID: 26996412 PMCID: PMC5003744 DOI: 10.1016/j.brainres.2016.02.037] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 12/12/2022]
Abstract
Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications.
Collapse
|
27
|
Abstract
Protein misfolding and aggregation underpin several fatal neurodegenerative diseases, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers. Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle modifications of Hsp104 primary sequence yielded large gains in protective activity against deleterious α-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.
Collapse
Affiliation(s)
- Meredith E Jackrel
- a Department of Biochemistry and Biophysics ; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia , PA USA
| | | |
Collapse
|
28
|
Sugar and Glycerol Transport in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:125-168. [PMID: 26721273 DOI: 10.1007/978-3-319-25304-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Saccharomyces cerevisiae the process of transport of sugar substrates into the cell comprises a complex network of transporters and interacting regulatory mechanisms. Members of the large family of hexose (HXT) transporters display uptake efficiencies consistent with their environmental expression and play physiological roles in addition to feeding the glycolytic pathway. Multiple glucose-inducing and glucose-independent mechanisms serve to regulate expression of the sugar transporters in yeast assuring that expression levels and transporter activity are coordinated with cellular metabolism and energy needs. The expression of sugar transport activity is modulated by other nutritional and environmental factors that may override glucose-generated signals. Transporter expression and activity is regulated transcriptionally, post-transcriptionally and post-translationally. Recent studies have expanded upon this suite of regulatory mechanisms to include transcriptional expression fine tuning mediated by antisense RNA and prion-based regulation of transcription. Much remains to be learned about cell biology from the continued analysis of this dynamic process of substrate acquisition.
Collapse
|
29
|
Du Z, Zhang Y, Li L. The Yeast Prion [SWI(+)] Abolishes Multicellular Growth by Triggering Conformational Changes of Multiple Regulators Required for Flocculin Gene Expression. Cell Rep 2015; 13:2865-78. [PMID: 26711350 DOI: 10.1016/j.celrep.2015.11.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 11/26/2022] Open
Abstract
Although transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. Here, we show that the yeast prion [SWI(+)] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes and become inactivated in [SWI(+)] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI(+)] cells, which are SDS resistant, heritable, and curable, but become metastable after separation from [SWI(+)]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI(+)] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence distinct traits differently through multi-level regulations, providing insights into the biological roles of prions.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| | - Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, No. 3 Shangyuan Residence, Haidian District, Beijing 100044, China
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 320 E. Superior Street, Searle 7-650, Chicago, IL 60611, USA.
| |
Collapse
|
30
|
Mechanistic and Structural Insights into the Prion-Disaggregase Activity of Hsp104. J Mol Biol 2015; 428:1870-85. [PMID: 26608812 DOI: 10.1016/j.jmb.2015.11.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/23/2022]
Abstract
Hsp104 is a dynamic ring translocase and hexameric AAA+ protein found in yeast, which couples ATP hydrolysis to disassembly and reactivation of proteins trapped in soluble preamyloid oligomers, disordered protein aggregates, and stable amyloid or prion conformers. Here, we highlight advances in our structural understanding of Hsp104 and how Hsp104 deconstructs Sup35 prions. Although the atomic structure of Hsp104 hexamers remains uncertain, volumetric reconstruction of Hsp104 hexamers in ATPγS, ADP-AlFx (ATP hydrolysis transition-state mimic), and ADP via small-angle x-ray scattering has revealed a peristaltic pumping motion upon ATP hydrolysis. This pumping motion likely drives directional substrate translocation across the central Hsp104 channel. Hsp104 initially engages Sup35 prions immediately C-terminal to their cross-β structure. Directional pulling by Hsp104 then resolves N-terminal cross-β structure in a stepwise manner. First, Hsp104 fragments the prion. Second, Hsp104 unfolds cross-β structure. Third, Hsp104 releases soluble Sup35. Deletion of the Hsp104 N-terminal domain yields a hypomorphic disaggregase, Hsp104(∆N), with an altered pumping mechanism. Hsp104(∆N) fragments Sup35 prions without unfolding cross-β structure or releasing soluble Sup35. Moreover, Hsp104(∆N) activity cannot be enhanced by mutations in the middle domain that potentiate disaggregase activity. Thus, the N-terminal domain is critical for the full repertoire of Hsp104 activities.
Collapse
|
31
|
Kabani M, Melki R. More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions. Curr Genet 2015; 62:265-70. [PMID: 26553335 PMCID: PMC4826420 DOI: 10.1007/s00294-015-0534-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 10/28/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023]
Abstract
In the yeast Saccharomyces cerevisiae, an ensemble of structurally and functionally diverse cytoplasmic proteins has the ability to form self-perpetuating protein aggregates (e.g. prions) which are the vectors of heritable non-Mendelian phenotypic traits. Whether harboring these prions is deleterious—akin to mammalian degenerative disorders—or beneficial—as epigenetic modifiers of gene expression—for yeasts has been intensely debated and strong arguments were made in support of both views. We recently reported that the yeast prion protein Sup35p is exported via extracellular vesicles (EV), both in its soluble and aggregated infectious states. Herein, we discuss the possible implications of this observation and propose several hypotheses regarding the roles of EV in both vertical and horizontal propagation of ‘good’ and ‘bad’ yeast prions.
Collapse
Affiliation(s)
- Mehdi Kabani
- Centre National de la Recherche Scientifique (CNRS), Paris-Saclay Institute of Neuroscience, Université Paris-Saclay, Bât. 32-33, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| | - Ronald Melki
- Centre National de la Recherche Scientifique (CNRS), Paris-Saclay Institute of Neuroscience, Université Paris-Saclay, Bât. 32-33, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
32
|
Yeast prions: Paramutation at the protein level? Semin Cell Dev Biol 2015; 44:51-61. [DOI: 10.1016/j.semcdb.2015.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
|
33
|
Jackrel ME, Shorter J. Potentiated Hsp104 variants suppress toxicity of diverse neurodegenerative disease-linked proteins. Dis Model Mech 2014; 7:1175-84. [PMID: 25062688 PMCID: PMC4174528 DOI: 10.1242/dmm.016113] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding is implicated in numerous lethal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD). There are no therapies that reverse these protein-misfolding events. We aim to apply Hsp104, a hexameric AAA+ protein from yeast, to target misfolded conformers for reactivation. Hsp104 solubilizes disordered aggregates and amyloid, but has limited activity against human neurodegenerative disease proteins. Thus, we have previously engineered potentiated Hsp104 variants that suppress aggregation, proteotoxicity and restore proper protein localization of ALS and PD proteins in Saccharomyces cerevisiae, and mitigate neurodegeneration in an animal PD model. Here, we establish that potentiated Hsp104 variants possess broad substrate specificity and, in yeast, suppress toxicity and aggregation induced by wild-type TDP-43, FUS and α-synuclein, as well as missense mutant versions of these proteins that cause neurodegenerative disease. Potentiated Hsp104 variants also rescue toxicity and aggregation of TAF15 but not EWSR1, two RNA-binding proteins with a prion-like domain that are connected with the development of ALS and frontotemporal dementia. Thus, potentiated Hsp104 variants are not entirely non-specific. Indeed, they do not unfold just any natively folded protein. Rather, potentiated Hsp104 variants are finely tuned to unfold proteins bearing short unstructured tracts that are not recognized by wild-type Hsp104. Our studies establish the broad utility of potentiated Hsp104 variants.
Collapse
Affiliation(s)
- Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|