1
|
Firacative C, Zuluaga-Puerto N, Guevara J. Cryptococcus neoformans Causing Meningoencephalitis in Adults and a Child from Lima, Peru: Genotypic Diversity and Antifungal Susceptibility. J Fungi (Basel) 2022; 8:jof8121306. [PMID: 36547639 PMCID: PMC9781953 DOI: 10.3390/jof8121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cryptococcosis, caused predominantly by Cryptococcus neoformans, is a potentially fatal, opportunistic infection that commonly affects the central nervous system of immunocompromised patients. Globally, this mycosis is responsible for almost 20% of AIDS-related deaths, and in countries like Peru, its incidence remains high, mostly due to the annual increase in new cases of HIV infection. This study aimed to establish the genotypic diversity and antifungal susceptibility of C. neoformans isolates causing meningoencephalitis in 25 adults and a 9-year-old girl with HIV and other risk factors from Lima, Peru. To identify the genotype of the isolates, multilocus sequence typing was applied, and to establish the susceptibility of the isolates to six antifungals, a YeastOne® broth microdilution was used. From the isolates, 19 were identified as molecular type VNI, and seven as VNII, grouped in eight and three sequence types, respectively, which shows that the studied population was highly diverse. Most isolates were susceptible to all antifungals tested. However, VNI isolates were less susceptible to fluconazole, itraconazole and voriconazole than VNII isolates (p < 0.05). This study contributes data on the molecular epidemiology and the antifungal susceptibility profile of the most common etiological agent of cryptococcosis, highlighting a pediatric case, something which is rare among cryptococcal infection.
Collapse
Affiliation(s)
- Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
- Correspondence:
| | | | - José Guevara
- Facultad de Medicina “San Fernando”, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| |
Collapse
|
2
|
Hitchcock M, Xu J. Analyses of the Global Multilocus Genotypes of the Human Pathogenic Yeast Cryptococcus neoformans Species Complex. Genes (Basel) 2022; 13:2045. [PMID: 36360282 PMCID: PMC9691084 DOI: 10.3390/genes13112045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/18/2023] Open
Abstract
Cryptococcus neoformans species complex (CNSC) is a globally distributed human opportunistic yeast pathogen consisting of five major molecular types (VNI, VNII, VNB, VNIII and VNIV) belonging to two species, C. neoformans (VNI, VNII and VNB, collectively called serotype A) and C. deneoformans (VNIV, commonly called serotype D), and their hybrids (VNIII, serotype AD). Over the years, many studies have analyzed the geographical distribution and genetic diversity of CNSC. However, the global population structure and mode of reproduction remain incompletely described. In this study, we analyze the published multilocus sequence data at seven loci for CNSC. The combined sequences at the seven loci identified a total of 657 multilocus sequence types (STs), including 296 STs with known geographic information, representing 4200 non-redundant isolates from 31 countries and four continents. Among the 296 STs, 78 and 52 were shared among countries and continents, respectively, representing 3643 of the 4200 isolates. Except for the clone-corrected serotype D sample among countries, our analysis of the molecular variance of the 4200 isolates revealed significant genetic differentiations among countries and continents in populations of CNSC, serotype A, and serotype D. Phylogenetic analyses of the concatenated sequences of all 657 STs revealed several large clusters corresponding to the major molecular types. However, several rare but distinct STs were also found, representing potentially novel molecular types and/or hybrids of existing molecular types. Phylogenetic incompatibility analyses revealed evidence for recombination within all four major molecular types-VNI, VNII, VNIV and VNB-as well as within two VNB subclades, VNBI and VNBII, and two ST clusters around the most common STs, ST5 and ST93. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across most samples. Together, our results suggest evidence for historical differentiation, frequent recent gene flow, clonal expansion and recombination within and between lineages of the global CNSC population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
4
|
Leepattarakit T, Tulyaprawat O, Ngamskulrungroj P. The Risk Factors and Mechanisms of Azole Resistance of Candida tropicalis Blood Isolates in Thailand: A Retrospective Cohort Study. J Fungi (Basel) 2022; 8:jof8100983. [PMID: 36294548 PMCID: PMC9604623 DOI: 10.3390/jof8100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
In recent decades, an epidemiological shift has been observed from Candida infections to non-albicans species and resistance to azoles. We investigated the associated factors and molecular mechanisms of azole-resistant blood isolates of C. tropicalis. Full-length sequencing of the ERG11 gene and quantitative real-time RT-PCR for the ERG11, MDR1, and CDR1 genes were performed. Male sex (odds ratio, 0.38), leukemia (odds ratio 3.15), and recent administration of azole (odds ratio 10.56) were associated with isolates resistant to azole. ERG11 mutations were found in 83% of resistant isolates, with A395T as the most common mutation (53%). There were no statistically significant differences in the expression of the ERG11, MDR1, and CDR1 genes between the groups resistant and susceptible to azole. The prevalence of azole-resistant isolates was higher than the usage of antifungal drugs, suggesting the possibility of environmental transmission in the healthcare setting. The unknown mechanism of the other 17% of the resistant isolates remains to be further investigated.
Collapse
|
5
|
Bertout S, Gouveia T, Krasteva D, Pierru J, Pottier C, Bellet V, Arianiello E, Salipante F, Roger F, Drakulovski P. Search for Cryptococcus neoformans/gattii Complexes and Related Genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) spp. Biotope: Two Years Surveillance of Wild Avian Fauna in Southern France. J Fungi (Basel) 2022; 8:jof8030227. [PMID: 35330229 PMCID: PMC8948691 DOI: 10.3390/jof8030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Fungi belonging to the Cryptococcus genus and related genera (Filobasidium, Holtermanniella, Naganishia, Papiliotrema, Solicoccozyma, Vishniacozyma) are encapsulated yeasts found in either the environment or animal sources. However, the precise biotopes of most species remain poorly defined. To assess whether wild birds from southern France can carry or spread the most pathogenic species (i.e., species belonging to the C. neoformans and C. gattii complexes), as well as lesser-studied species (non-neoformans/gattii Cryptococcus and former Cryptococcus spp.), 669 birds belonging to 89 species received for care over a two-year period at the Centre de Protection de la Faune Sauvage of Villeveyrac (Bird Protection League nongovernmental organization (NGO) care center) were sampled. Samples were cultured, and Cryptococcus and former Cryptococcus yeasts were identified by PCR sequencing. The purpose was to evaluate whether there was any health risk to local populations or care personnel in aviaries and gather new data on the ecological niches of lesser-known species. One hundred and seven birds (16%) were found to be positive for at least one Cryptococcus or former Cryptococcus species. No yeasts belonging to the highly pathogenic C. neoformans or C. gattii complexes were isolated. However, diversity was notable, with 20 different Cryptococcus or former Cryptococcus species identified. Furthermore, most bird–yeast species associations found in this study have never been described before.
Collapse
Affiliation(s)
- Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Tiphany Gouveia
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Julie Pierru
- Centre Régional de Sauvegarde de la Faune Sauvage, LPO Hérault, 15 rue de Faucon Crécelerette, 34560 Villeveyrac, France; (J.P.); (E.A.)
| | - Cyrille Pottier
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Emilie Arianiello
- Centre Régional de Sauvegarde de la Faune Sauvage, LPO Hérault, 15 rue de Faucon Crécelerette, 34560 Villeveyrac, France; (J.P.); (E.A.)
| | - Florian Salipante
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital Center, University of Montpellier, 34000 Nîmes, France;
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
| | - Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France; (S.B.); (T.G.); (D.K.); (C.P.); (V.B.); (F.R.)
- Correspondence: ; Tel.: +33-4-11-75-94-24
| |
Collapse
|
6
|
Reis RS, Bonna ICF, Antonio IMDS, Pereira SA, do Nascimento CRS, Ferraris FK, Brito-Santos F, Ferreira Gremião ID, Trilles L. Cryptococcus neoformans VNII as the Main Cause of Cryptococcosis in Domestic Cats from Rio de Janeiro, Brazil. J Fungi (Basel) 2021; 7:jof7110980. [PMID: 34829267 PMCID: PMC8621350 DOI: 10.3390/jof7110980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptococcosis is a systemic fungal disease acquired from contaminated environments with propagules of the basidiomycetous yeasts of the Cryptococcus neoformans and C. gattii species complexes. The C. neoformans species complex classically comprises four major molecular types (VNI, VNII, VNIII, and VNIV), and the C. gattii species complex comprises another four (VGI, VGII, VGIII, and VGIV) and the newly identified molecular type VGV. These major molecular types differ in their epidemiological and ecological features, clinical presentations, and therapeutic outcomes. Generally, the most common isolated types are VNI, VGI, and VGII. The epidemiological profile of cryptococcosis in domestic cats is poorly studied and cats can be the sentinels for human infections. Therefore, the present study aimed to determine the molecular characterization of Cryptococcus spp. isolated from domestic cats and their dwellings in the metropolitan area of Rio de Janeiro, Brazil. A total of 36 Cryptococcus spp. strains, both clinical and environmental, from 19 cats were subtyped using multilocus sequence typing (MLST). The ploidy was identified using flow cytometry and the mating type was determined through amplification with specific pheromone primers. All strains were mating type alpha and 6/36 were diploid (all VNII). Most isolates (63.88%) were identified as VNII, a rare molecular type, leading to the consideration that this genotype is more likely related to skin lesions, since there was a high percentage (68.75%) of cats with skin lesions, which is also considered rare. Further studies regarding the molecular epidemiology of cryptococcosis in felines are still needed to clarify the reason for the large proportion of the rare molecular type VNII causing infections in cats.
Collapse
Affiliation(s)
- Rosani Santos Reis
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabel Cristina Fábregas Bonna
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabela Maria da Silva Antonio
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | | | - Fausto Klabund Ferraris
- Pharmacology Laboratory/INCQS/Fiocruz. Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Fábio Brito-Santos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals (Lapclin-Dermzoo)/INI/Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.M.d.S.A.); (S.A.P.); (I.D.F.G.)
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases (INI), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (R.S.R.); (I.C.F.B.); (F.B.-S.)
- Correspondence:
| |
Collapse
|
7
|
Goudoudaki S, Milioni A, Kritikou S, Velegraki A, Patrinos GP, Gioula G, Manoussopoulos Y, Kambouris ME. Fast, Scalable, and Practical: An Alkaline DNA Extraction Pipeline for Emergency Microbiomics Biosurveillance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:484-494. [PMID: 34255557 DOI: 10.1089/omi.2021.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pandemics and environmental crises evident from the first two decades of the 21st century call for methods innovation in biosurveillance and early detection of risk signals in planetary ecosystems. In crises conditions, conventional methods in public health, biosecurity, and environmental surveillance do not work well. In addition, the standard laboratory amenities and procedures may become unavailable, irrelevant, or simply not feasible, for example, owing to disruptions in logistics and process supply chains. The COVID-19 pandemic has been a wakeup call in this sense to reintroduce point-of-need diagnostics with an eye to limited resource settings and biosurveillance solutions. We report here a methodology innovation, a fast, scalable, and alkaline DNA extraction pipeline for emergency microbiomics biosurveillance. We believe that the presented methodology is well poised for effective, resilient, and anticipatory responses to future pandemics and ecological crises while contributing to microbiome science and point-of-need diagnostics in nonelective emergency contexts. The alkaline DNA extraction pipeline can usefully expand the throughput in emergencies by deployment or to allow backup in case of instrumentation failure in vital facilities. The need for distributed public health genomics surveillance is increasingly evident in the 21st century. This study makes a contribution to these ends broadly, and for future pandemic preparedness in particular. We call for innovation in biosurveillance methods that remain important existentially on a planet under pressure from unchecked human growth and breach of the boundaries between human and nonhuman animal habitats.
Collapse
Affiliation(s)
- Stavroula Goudoudaki
- Plant Protection Division of Patras, Institute of Industrial and Forage Plants, Patras, Greece
| | - Aphroditi Milioni
- National Collection of Pathogenic Fungi, Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Kritikou
- National Collection of Pathogenic Fungi, Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristea Velegraki
- National Collection of Pathogenic Fungi, Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Patrinos
- Department of Pharmacy, University of Patras, Patras, Greece.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Georgia Gioula
- Microbiology Department, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yiannis Manoussopoulos
- Plant Protection Division of Patras, Institute of Industrial and Forage Plants, Patras, Greece
| | | |
Collapse
|
8
|
Liu C, Zhu T, Song H, Niu C, Wang J, Zheng F, Li Q. Evaluation and prediction of the biogenic amines in Chinese traditional broad bean paste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:2734-2748. [PMID: 34194109 PMCID: PMC8196132 DOI: 10.1007/s13197-020-04781-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2020] [Accepted: 09/09/2020] [Indexed: 06/13/2023]
Abstract
Biogenic amines (BAs) are a threat to the safety of broad bean paste, and biosynthetic mechanism of BA and its regulation are unknown. This study aimed to assess microbial BA synthesis in Chinese traditional broad bean paste and determine favorable fermentation conditions for BA regulation. The BAs content in 27 pastes was within the safe range. 64 strains with potential decarboxylation were screened in Luria-Bertani Glycerol medium and identified as Bacillus spp. Although Bacillus amyloliquefaciens produced highest levels of BAs (70.14 ± 2.69 mg/L) in LBAA, Bacillus subtilis produced 6% more BAs than B. amyloliquefaciens. Meanwhile, temperature was the most remarkable factor affecting BAs production by B. amyloliquefaciens 1-13. Furthermore, the fermented broad bean paste model revealed that BA content increased by 61.2 mg/kg every 10 days at 45 °C, which was approximately threefold of that at 25 °C. An ARIMA prediction model of BAs content was constructed, and the total BAs content of 40 mg/100 g was set as the critical value. This study not only contributed to understanding the BAs formation mechanism, but also provided potential measures to control the BAs in fermented soybean products.
Collapse
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Tianao Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Haoyang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
- Lab of Brewing Science and Engineering, Jiangnan University, No.1800, Lihu Road, Wuxi, 214122 JiangSu Province People’s Republic of China
| |
Collapse
|
9
|
Florek M, Nawrot U, Korzeniowska-Kowal A, Włodarczyk K, Wzorek A, Woźniak-Biel A, Brzozowska M, Galli J, Bogucka A, Król J. An analysis of the population of Cryptococcus neoformans strains isolated from animals in Poland, in the years 2015-2019. Sci Rep 2021; 11:6639. [PMID: 33758319 PMCID: PMC7987961 DOI: 10.1038/s41598-021-86169-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Fungi belonging to the Cryptococcus neoformans/C. gattii species complex (CNGSC) are pathogens causing severe infections in humans and animals, that for humans may result in a mortality rate ranging up to 70%. The CNGSC is divided into eight major molecular types, that may differ in their virulence and susceptibility. In order to fully understand the epidemiology of cryptococcosis, it is important to study the world distribution and population structure of these pathogens. The present study is the first presenting a population of strains isolated in Poland and one of the few using a multi-species animal group as a source of the specimen. The pathogen was present in 2.375% of the tested animals. The URA5-RFLP and MALDI-TOF MS analyses have revealed that the population consisted exclusively of C. neoformans strains, with a predominance of major molecular type VNIV (C. neoformans var. neoformans). The MALDI-TOF MS was used to perform the CNGSC strains identification on both the species and sub-species level. Despite the fact that the animals providing the specimens were not treated with 5-fluorocytosine, around 10% of the tested population presented MIC values exceeding 64 mg/L, indicating the existence of the 5-fluorocytosine-resistant strains in the environment.
Collapse
Affiliation(s)
- Magdalena Florek
- Department of Pathology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland.
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211a, 50-556, Wrocław, Poland
| | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Katarzyna Włodarczyk
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211a, 50-556, Wrocław, Poland
| | - Anna Wzorek
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366, Wrocław, Poland
| | - Magdalena Brzozowska
- Referral Animal Hospital Strömsholm, Djursjukhusvägen 11, 73494, Strömsholm, Sweden
| | - Józef Galli
- Veterinary Laboratory Vetlab, Wodzisławska 6, 52-017, Wrocław, Poland
| | - Anna Bogucka
- Veterinary Laboratory Vetlab, Wodzisławska 6, 52-017, Wrocław, Poland
| | - Jarosław Król
- Department of Pathology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
10
|
Population diversity and virulence characteristics of Cryptococcus neoformans/C. gattii species complexes isolated during the pre-HIV-pandemic era. PLoS Negl Trop Dis 2020; 14:e0008651. [PMID: 33017391 PMCID: PMC7535028 DOI: 10.1371/journal.pntd.0008651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cryptococcosis has become a major global health problem since the advent of the HIV pandemic in 1980s. Although its molecular epidemiology is well-defined, using isolates recovered since then, no pre-HIV-pandemic era epidemiological data exist. We conducted a molecular epidemiological study using 228 isolates of the C. neoformans/C. gattii species complexes isolated before 1975. Genotypes were determined by URA5 restriction fragment length polymorphism analysis and multi-locus sequence typing. Population genetics were defined by nucleotide diversity measurements, neutrality tests, and recombination analysis. Growth at 37°C, melanin synthesis, capsule production, and urease activity as virulence factors were quantified. The pre-HIV-pandemic isolates consisted of 186 (81.5%) clinical, 35 (15.4%) environmental, and 7 (3.1%) veterinary isolates. Of those, 204 (89.5%) belonged to C. neoformans VNI (64.0%), VNII (14.9%) and VNIV (10.5%) while 24 (10.5%) belonged to C. gattii VGIII (7.5%), VGI (2.6%) and VGII (0.5%). Among the 47 sequence types (STs) identified, one of VNII and 8 of VNIV were novel. ST5/VNI (23.0%) in C. neoformans and ST75/VGIII (25.0%) in C. gattii were the most common STs in both species complexes. Among C. neoformans, VNIV had the highest genetic diversity (Hd = 0.926) and the minimum recombination events (Rm = 10), and clinical isolates had less genetic diversity (Hd = 0.866) than environmental (Hd = 0.889) and veterinary isolates (Hd = 0.900). Among C. gattii, VGI had a higher nucleotide diversity (π = 0.01436) than in VGIII (π = 0.00328). The high-virulence genotypes (ST5/VNI and VGIIIa/serotype B) did not produce higher virulence factors levels than other genotypes. Overall, high genetic variability and recombination rates were found for the pre-HIV-pandemic era among strains of the C. neoformans/C. gattii species complexes. Whole genome analysis and in vivo virulence studies would clarify the evolution of the genetic diversity and/or virulence of isolates of the C. neoformans/C. gattii species complexes during the pre- and post-HIV-pandemic eras. Since the beginning of the HIV pandemic in 1980, infections due to isolates of the Cryptococcus neoformans/C. gattii species complexes have caused many deaths worldwide, especially in the HIV-infected population. Annually, approximately one-third, of all AIDS-related deaths,—representing more than 1,000,000 cases,—are caused by cryptococcosis. Since 1980, extensive molecular epidemiological surveys have been conducted, and the VNI molecular type has been found to be responsible for more than 90% of cryptococcosis in HIV patients. Whether the high VNI prevalence is associated with the HIV pandemic remains controversial as information on the isolates of the pre-HIV pandemic era is lacking. Therefore, this study of the molecular epidemiology and in vitro characteristics of the strains from the pre-HIV-pandemic era was undertaken. We found that only 64% of cryptococcosis was caused by VNI, and 9 sequence types existed only in the pre-HIV pandemic era. Unlike what was already known about the strains collected during the HIV pandemic era, ST5 and VGIIIa,—supposedly high virulence genotypes,—did not express higher virulence factors than other genotypes. These results implied that the HIV pandemic altered both the molecular epidemiology and virulence of Cryptococcus neoformans/C. gattii species complexes have been altered during HIV pandemic. However, detailed mechanism of these alteration remains to be deciphered further.
Collapse
|
11
|
Martínez-Pérez PA, Fleming PA, Hyndman TH. Isolation of Cryptococcus neoformans var. grubii (serotype A) and C. magnus from the nasal lining of free-ranging quokkas (Setonix brachyurus). Aust Vet J 2020; 98:610-615. [PMID: 32935332 DOI: 10.1111/avj.13019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Cryptococcus species are environmental yeasts, with a worldwide distribution and remarkable environmental adaptation. Although many species do not cause disease, C. neoformans and C. gattii are causative agents of cryptococcosis, a life threatening infection and a significant public health problem worldwide. Infection especially affects immunocompromised animals and humans. In wildlife, cryptococcosis appears to be more prevalent in captive populations. The objective of this study was to assess whether apparently healthy quokkas (Setonix brachyurus) harbor Cryptococcus spp. Using cultural and molecular methods, we studied yeasts isolated from nasal swabs collected from 130 free-ranging quokkas on Rottnest Island (RI, n = 97) and the mainland (n = 33) of Western Australia. Unspeciated Cryptococcus spp. (from four quokkas), C. neoformans var. grubii (serotype A) (two quokkas) and C. magnus (one quokka) were isolated from the nasal lining of apparently healthy quokkas from RI. Cryptococcus neoformans var. grubii was isolated from animals captured in a human-populated area on RI. There was no significant effect of the presence of Cryptococcus on the results of haematology, blood chemistry, peripheral blood cell morphology or clinical examination. To the best of our knowledge, this is the first documented isolation of C. neoformans var. grubii (serotype A) and C. magnus in a free-ranging macropod in Western Australia. The public health implications of this finding should be further explored.
Collapse
Affiliation(s)
- P A Martínez-Pérez
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - P A Fleming
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - T H Hyndman
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.,School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
12
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
13
|
Vélez N, Escandón P. Multilocus sequence typing (MLST) of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in six departments of Colombia reveals high genetic diversity. Rev Soc Bras Med Trop 2020; 53:e20190422. [PMID: 32935773 PMCID: PMC7491559 DOI: 10.1590/0037-8682-0422-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/29/2020] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION The average annual incidence of cryptococcosis in Colombia is 0.23 cases per 100,000 inhabitants in the general population, and 1.1 cases per 1000 in inhabitants with Acquired Immune Deficiency Syndrome (AIDS). In addition, the causal fungus has been isolated from the environment, with serotypes A-B and C in different regions. This study aims to determine the genetic association between clinical and environmental isolates of C. neoformans/C. gattii in Colombia. METHODS Multilocus sequence typing (MLST) was used to identify possible clones, providing information about the epidemiology, ecology, and etiology of this pathogen in Colombia. RESULTS A total of 110 strains, both clinical (n=61) and environmental (n=49), with 21 MLST sequence types (ST) of C. neoformans (n=14STs) and C. gattii (n=7STs) were identified. The STs which shared clinical and environmental isolate sources were grouped in different geographical categories; for C. neoformans, ST93 was identified in six departments, ST77 in five departments; and for C. gattii, ST25 was identified in three departments and ST79 in two. CONCLUSIONS High genetic diversity was found in isolates of C. neoformans/gattii by MLST, suggesting the presence of environmental sources harboring strains which may be sources of infection for humans, especially in immunocompromised patients; these data contribute to the information available in the country on the distribution and molecular variability of C. neoformans and C. gattii isolates recovered in Colombia.
Collapse
Affiliation(s)
- Norida Vélez
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| |
Collapse
|
14
|
Molecular Epidemiology Reveals Low Genetic Diversity among Cryptococcus neoformans Isolates from People Living with HIV in Lima, Peru, during the Pre-HAART Era. Pathogens 2020; 9:pathogens9080665. [PMID: 32824653 PMCID: PMC7459599 DOI: 10.3390/pathogens9080665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcosis, a mycosis presenting mostly as meningoencephalitis, affecting predominantly human immunodeficiency virus (HIV)-infected people, is mainly caused by Cryptococcus neoformans. The genetic variation of 48 C. neoformans isolates, recovered from 20 HIV-positive people in Lima, Peru, during the pre-highly active antiretroviral therapy (HAART) era, was studied retrospectively. The mating type of the isolates was determined by PCR, and the serotype by agglutination and CAP59-restriction fragment length polymorphism (RFLP). Genetic diversity was assessed by URA5-RFLP, PCR-fingerprinting, amplified fragment length polymorphism (AFLP), and multilocus sequence typing (MLST). All isolates were mating type alpha, with 39 molecular type VNI, seven VNII, corresponding to C. neoformans var. grubii serotype A, and two VNIII AD hybrids. Overall, the cryptococcal population from HIV-positive people in Lima shows a low degree of genetic diversity. In most patients with persistent cryptococcal infection, the same genotype was recovered during the follow-up. In four patients with relapse and one with therapy failure, different genotypes were found in isolates from the re-infection and from the isolate recovered at the end of the treatment. In one patient, two genotypes were found in the first cryptococcosis episode. This study contributes data from Peru to the ongoing worldwide population genetic analysis of Cryptococcus.
Collapse
|
15
|
Rossi A, Bannon K, Sanchez MD, Bradway DS. Pathology in Practice. J Am Vet Med Assoc 2020; 254:935-937. [PMID: 30938609 DOI: 10.2460/javma.254.8.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Samarasinghe H, Aljohani R, Jimenez C, Xu J. Fantastic yeasts and where to find them: the discovery of a predominantly clonal Cryptococcus deneoformans population in Saudi Arabian soils. FEMS Microbiol Ecol 2020; 95:5538757. [PMID: 31344232 DOI: 10.1093/femsec/fiz122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus deneoformans is an opportunist yeast pathogen and causative agent of meningoencephalitis in humans. It is known to be mainly distributed in temperate climates. Most of our current understanding of this species has come from clinical isolates, leaving environmental populations largely unexplored. The Middle East remains one such underexplored area with no published study to date investigating cryptococcal diversity in soil. In this study, we identified 76 C. deneoformans isolates from a survey of 562 soil samples collected from six cities in Saudi Arabia. Multilocus sequence typing revealed the presence of two major sequence types (STs), ST160 (n = 63) and ST294 (n = 9), along with four singleton STs, three of which were novel. One novel ST, ST613, was likely a recombinant product between ST160 and ST294. Among the 76 isolates, 75 belonged to mating type (MAT)α while one isolate was MATa. Our analyses suggest that the Saudi Arabian C. deneoformans population likely reproduces both asexually and sexually in nature. Our study is the first to report the occurrence of C. deneoformans in a desert climate, representing a novel expansion to this species' currently known ecological niche.
Collapse
Affiliation(s)
| | - Renad Aljohani
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Carlene Jimenez
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Tulyaprawat O, Pharkjaksu S, Chongtrakool P, Ngamskulrungroj P. An Association of an eBURST Group With Triazole Resistance of Candida tropicalis Blood Isolates. Front Microbiol 2020; 11:934. [PMID: 32508774 PMCID: PMC7248567 DOI: 10.3389/fmicb.2020.00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Candidemia, a bloodstream infection caused by genus Candida, has a high mortality rate. Candida albicans was previously reported to be the most common causative species among candidemia patients. However, during the past 10 years in Thailand, Candida tropicalis has been recovered from blood more frequently than C. albicans. The cause of this shift in the prevalence of Candida spp. remains unexplored. We conducted in vitro virulence studies and antifungal susceptibility profiles of 48 C. tropicalis blood isolates collected during 2015-2017. To compare to global isolates of C. tropicalis, multilocus sequence typing (MLST), a minimum spanning tree, and an eBURST analysis were also conducted. C. tropicalis and C. albicans were the most (47-48.7%) and second-most (21.5-33.9%) common species to be isolated from candidemia patients, respectively. Of the C. tropicalis blood isolates, 29.2, 0, 100, and 93.8% exhibited proteinase activity, phospholipase activity, hemolytic activity, and biofilm formation, respectively. Moreover, 20.8% (10/48) of the isolates were resistant to voriconazole and fluconazole, and also showed high minimum inhibitory concentrations (MICs) to posaconazole and itraconazole. In contrast, most of the isolates were susceptible to anidulafungin (97.9%), micafungin (97.9%), and caspofungin (97.9%), and showed low MICs to amphotericin B (100%) and 5-flucytosine (100%). The MLST identified 22 diploid sequence types. Based on the eBURST analysis and minimum spanning tree, 9 out of 13 members (69.2%) of an eBURST group 3 were resistant to voriconazole and fluconazole, and also showed high MICs to posaconazole and itraconazole. Association analysis revealed the eBURST group 3 was significantly associated with the four triazole resistance (p < 0.001). In conclusion, the eBURST group 3 was associated with the triazole resistance and resistance to many antifungal drugs might be collectively responsible for the prevalence shift.
Collapse
Affiliation(s)
| | | | | | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Cogliati M, Patrizia P, Vincenzo C, Esposto MC, Prigitano A, Romanò L, Puccianti E. Cryptococcus neoformans species complex isolates living in a tree micro-ecosystem. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Pharkjaksu S, Chongtrakool P, Chayakulkeeree M, Mitrpant C, Angkasekwinai P, Bennett JE, Kwon-Chung KJ, Ngamskulrungroj P. Cryptococcus neoformans/gattii Species Complexes from Pre-HIV Pandemic Era Contain Unusually High Rate of Non-Wild-Type Isolates for Amphotericin B. Infect Drug Resist 2020; 13:673-681. [PMID: 32161475 PMCID: PMC7049752 DOI: 10.2147/idr.s235473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction The Cryptococcus neoformans/gattii species complexes are a leading cause of fatality among HIV-infected patients. Despite the unavailability of clinical breakpoints (CBPs) for antifungal agents, epidemiological cutoff values (ECVs) were recently proposed, and non-wild-type isolates for polyenes and azoles are being increasingly reported. However, the distributions of the susceptibility patterns for pre-HIV-era isolates have not been studied. Methods We determined the in vitro antifungal susceptibility patterns of 233 Cryptococcus isolates, collected at the National Institutes of Health, USA, in pre-HIV pandemic era, to study minimum inhibitory concentrations (MICs) to the important drugs for cryptococcosis and to compare the results with strain genotypes. Amphotericin B susceptibility was compared to published ECV of C. neoformans. Results The 233 Cryptococcus strains consisted of 89.7% C. neoformans species complex and 10.3% C. gattii species complex. Most were from clinical sources (189, 81.1%), and the major molecular type was VNI (146, 62.7%). The highest geometric mean (GM) was observed for fluconazole (GM = 0.96 µg/mL) while the lowest was for itraconazole (GM = 0.10 µg/mL). MICs to fluconazole in C. gattii species complex were significantly higher than C. neoformans species complex (p < 0.001). Moreover, C. neoformans/VNI strains showed significantly higher MICs than others such as C. neoformans/VNII to fluconazole (p < 0.0001) and C. deneoformans/VNIV to amphotericin B (p = 0.022) and fluconazole (p = 0.008). In our collection of 167 clinical C. neoformans species complex strains, 85 (50.9%), 24 (14.4%), and 3 (1.8%) strains had an amphotericin B (AMB)-MIC of 1, 2, and 4 µg/mL, respectively. The high percentage (66.9%, 79/118 strains) of non-wild-type clinical C. neoformans VNI strains, using an AMB-ECV of 0.5 µg/mL, was found. Moreover, 25 of 28 (89.3%) C. neoformans VNI strains from environmental and veterinary sources also had AMB-MICs above 0.5 µg/mL. In general, there was no significant difference in GM AMB-MIC of the clinical strains isolated from patients with (35 patients) and without (78 patients) prior AMB treatment (0.85 vs 0.76; p = 0.624). GM MIC of the environmental strains was not significantly different from that of the prior AMB-treatment strains (0.98 vs 0.76, p = 0.159) and the post-AMB-treatment strains (0.98 vs 0.85, p = 0.488). Conclusion The high rate of non-wild-type among these otherwise naive isolates to amphotericin B is unexpected. Confirmation with more strains from a later era is needed.
Collapse
Affiliation(s)
- Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - John E Bennett
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyung J Kwon-Chung
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Kassi FK, Drakulovski P, Bellet V, Roger F, Chabrol A, Krasteva D, Doumbia A, Landman R, Kakou A, Reynes J, Delaporte E, Menan HEI, Bertout S. Cryptococcus genetic diversity and mixed infections in Ivorian HIV patients: A follow up study. PLoS Negl Trop Dis 2019; 13:e0007812. [PMID: 31738768 PMCID: PMC6886875 DOI: 10.1371/journal.pntd.0007812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/02/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
Genetic diversity analyses were performed by sero-genotyping and multi-locus sequence typing on 252 cryptococcal isolates from 13 HIV-positive Ivorian patients followed-up for cryptococcal meningitis. Antifungal susceptibility analyses were performed according to the CLSI M27A3 method. The majority (67.8%) of the isolates belonged to the Cryptococcus neoformans (serotype A) species complex, with 93% being VNI and 7% being VNII. Cryptococcus deuterogattii VGII (serotype B) represented 16.7% of the strains, while C. neoformans/C. deneoformans VNIII (serotype AD) hybrids accounted for 15.1% of the strains. One strain (0.4%) was not identifiable. Nine different sequence types (STs 5, 6, 23, 40, 93, 207, 311, and a new ST; 555) were identified in the C. neoformans population, while the C. deuterogattii population comprised the single ST 173. The distribution of the strains showed that, while the majority of patients (9/13) harboured a single sequence type, 4 patients showed mixed infections. These patients experienced up to 4 shifts in strain content either at the species and/or ST level during their follow-up. This evolution of diversity over time led to the co-existence of up to 3 different Cryptococcus species and 4 different ST within the same individual during the course of infection. Susceptibility testing showed that all strains were susceptible to amphotericin B while 3.6% of them had a none-wild type phenotype to 5-flucytosine. Concerning fluconazole, 2.9% of C.neoformans serotype A strains and 2.4% of C. deuterogattii had also respectively a none-wild type phenotype to this molecule. All C. neoformans x C. deneoformans serotype AD hybrids had however a wild type phenotype to fluconazole. The present study showed that mixed infections exist and could be of particular importance for care outcomes. Indeed, (i) the different Cryptococcus species are known to exhibit different virulence and different susceptibility patterns to antifungal drugs and (ii) the strains genetic diversity within the samples may influence the susceptibility to antifungal treatment.
Collapse
Affiliation(s)
- Fulgence Kondo Kassi
- Université Félix Houphouet-Boigny, Unité des Sciences Pharmaceutiques et Biologiques, Abidjan, Côte d’Ivoire
| | - Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Amélie Chabrol
- Service de Maladies Infectieuses et Tropicales, CH Sud Francilien, Corbeil, France
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Adama Doumbia
- Université Félix Houphouet-Boigny, Unité des Sciences Pharmaceutiques et Biologiques, Abidjan, Côte d’Ivoire
| | - Roland Landman
- Institut de Médecine et Epidémiologie Appliquée (IMEA), Fondation Léon M’Ba, Paris, France
| | - Aka Kakou
- Service des Maladies Infectieuses et Tropicales, CHU Treichville, Abidjan, Côte d’Ivoire
| | - Jacques Reynes
- CHU Gui de Chauliac, Service des Maladies Infectieuses et Tropicales, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| | - Eric Delaporte
- TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD) and University of Montpellier, Montpellier, France
| | - Hervé Eby Ignace Menan
- Diagnostic and Research Center on AIDS and Other Infectious Diseases (CeDReS), Abidjan, Côte d'Ivoire
| | - Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, IRD UMI 233, INSERM U1175, Université de Montpellier, Unité TransVIHMI, Montpellier, France
| |
Collapse
|
21
|
Amrouche T, Mounier J, Pawtowski A, Thomas F, Picot A. Microbiota Associated with Dromedary Camel Milk from Algerian Sahara. Curr Microbiol 2019; 77:24-31. [PMID: 31655861 DOI: 10.1007/s00284-019-01788-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
Despite the fact that camel milk represents a valuable food source, the fungal diversity of raw camel milk has been poorly studied so far. Here, we investigated the fungal and bacterial communities found in dromedary camel milk from Ghardaia, a representative region of Algerian Sahara. The application of both culture-dependent and independent molecular techniques, based on dHPLC analysis and metabarcoding of ITS region, provided a complementary biodiversity assessment of camel milk fungi which was composed of 15 different taxa. Yeast species belonged to Filobasidium, Naganishia, Malassezia, Mrakia, Rhodotorula, and Yarrowia genera; and mold species belonged to Fusarium, Cladosporium, and Penicillium genera. All three techniques revealed that the fungal community was dominated by species belonging to the former genus Cryptococcus (Filobasidium and Naganishia) although none of them was able to encompass the entire fungal diversity alone. In addition, massive parallel 16S rRNA tag sequencing was applied to gain an insight into the diversity of bacterial communities which were dominated by Pseudomonas spp. Our results provide an initial insight about fungal and bacterial population found in dromedary camel milk from Algerian Sahara.
Collapse
Affiliation(s)
- Tahar Amrouche
- Laboratory of Food Quality and Safety, Faculty of Biological Sciences and Agronomic Sciences, M. Mammeri University, 15000, Tizi Ouzou, Algeria
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France.
| | - Audrey Pawtowski
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Florian Thomas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Univ Brest, 29280, Plouzané, France
| |
Collapse
|
22
|
Brito-Santos F, Reis RS, Coelho RA, Almeida-Paes R, Pereira SA, Trilles L, Meyer W, Wanke B, Lazéra MDS, Gremião IDF. Cryptococcosis due to Cryptococcus gattii VGII in southeast Brazil: The One Health approach revealing a possible role for domestic cats. Med Mycol Case Rep 2019; 24:61-64. [PMID: 31061785 PMCID: PMC6487353 DOI: 10.1016/j.mmcr.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 11/23/2022] Open
Abstract
Two cats infected by C. gattii, presented lesions on the nasal region and respiratory signs. Strains were typed as molecular type VGII, mating type alpha, MLST subtypes ST442 and ST185. Since Rio de Janeiro is known as an endemic area for C. neoformans VNI, these cases might be a warning for a possible emergence of C. gattii VGII in southeast Brazil.
Collapse
Affiliation(s)
- Fábio Brito-Santos
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Rosani Santos Reis
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Sandro Antônio Pereira
- Laboratory of Clinical Research on Dermatozoonosis in Domestic Animals, National Institute of Infectious Diseases Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciana Trilles
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Wieland Meyer
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil.,Molecular Mycology Research Laboratory, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Bodo Wanke
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Márcia Dos Santos Lazéra
- Mycology Laboratory, National Institute of Infectious Diseases Evandro Chagas (INI), Fiocruz, Rio de Janeiro, Brazil
| | - Isabella Dib Ferreira Gremião
- Laboratory of Clinical Research on Dermatozoonosis in Domestic Animals, National Institute of Infectious Diseases Evandro Chagas (INI), FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Cogliati M, Desnos-Ollivier M, McCormick-Smith I, Rickerts V, Ferreira-Paim K, Meyer W, Boekhout T, Hagen F, Theelen B, Inácio J, Alonso B, Colom MF, Trilles L, Montagna MT, De Donno A, Susever S, Ergin C, Velegraki A, Ellabib MS, Nardoni S, Macci C, Trovato L, Dipineto L, Akcaglar S, Mlinaric-Missoni E, Bertout S, Vencá ACF, Sampaio AC, Criseo G, Ranque S, Çerikçioğlu N, Marchese A, Vezzulli L, Ilkit M, Pasquale V, Polacheck I, Lockhart SR. Genotypes and population genetics of cryptococcus neoformans and cryptococcus gattii species complexes in Europe and the mediterranean area. Fungal Genet Biol 2019; 129:16-29. [PMID: 30953839 DOI: 10.1016/j.fgb.2019.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
A total of 476 European isolates (310 Cryptococcus neoformans var. grubii, 150 C. neoformans var. neoformans, and 16 C. gattii species complex) from both clinical and environmental sources were analyzed by multi-locus sequence typing. Phylogenetic and population genetic analyses were performed. Sequence analysis identified 74 sequence types among C. neoformans var. neoformans (VNIV), 65 among C. neoformans var. grubii (56 VNI, 8 VNII, 1 VNB), and 5 among the C. gattii species complex (4 VGI and 1 VGIV) isolates. ST23 was the most frequent genotype (22%) among VNI isolates which were mostly grouped in a large clonal cluster including 50% of isolates. Among VNIV isolates, a predominant genotype was not identified. A high percentage of autochthonous STs were identified in both VNI (71%) and VNIV (96%) group of isolates. The 16 European C. gattii species complex isolates analyzed in the present study originated all from the environment and all belonged to a large cluster endemic in the Mediterranean area. Population genetic analysis confirmed that VNI group of isolates were characterized by low variability and clonal expansion while VNIV by a higher variability and a number of recombination events. However, when VNI and VNIV environmental isolates were compared, they showed a similar population structure with a high percentage of shared mutations and the absence of fixed mutations. Also linkage disequilibrium analysis reveals differences between clinical and environmental isolates showing a key role of PLB1 allele combinations in host infection as well as the key role of LAC1 allele combinations for survival of the fungus in the environment. The present study shows that genetic comparison of clinical and environmental isolates represents a first step to understand the genetic characteristics that cause the shift of some genotypes from a saprophytic to a parasitic life style.
Collapse
Affiliation(s)
- Massimo Cogliati
- Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| | - Marie Desnos-Ollivier
- Institut Pasteur, Molecular Mycology Unit, National Reference Center for Invasive Mycoses & Antifungal, CNRS UMR2000, Paris, France
| | | | | | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Center for Infectious Diseases, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashier Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, (Research and Educational Network) Westmead Institute for Medical Research, Westmead, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashier Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Westmead Hospital, (Research and Educational Network) Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Institute of Biodiversity and Ecosystem Dynamic (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Joäo Inácio
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Beatriz Alonso
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK; Instituto de Investigación Sanitaria Gregorio Marañón (IisGM), Hospital Gegorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | - Aristea Velegraki
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Cristina Macci
- National Research Council, Research Institute on Terrestrial Ecosystems (IRET), Pisa, Italy
| | | | | | | | | | - Sebastien Bertout
- Unité Mixte Internationale "Recherches Translationnelles sur l'infection à VIH et les Maladies Infectieuses", Université de Montpellier, Montpellier, France
| | - Ana C F Vencá
- Instituto de Higiene e Medicina Tropical, Lisbon, Portugal
| | - Ana C Sampaio
- Universidade de Trás-os-Montes e Alto Douro, CITAB, Quinta dos Prados, Vila Real, Portugal
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Stéphane Ranque
- Aix-Marseille University, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | | | - Anna Marchese
- Sezione di Microbiologia del DISC, Università di Genova-IRCCS Policlinico San Martino Genova, Genova, Italy
| | - Luigi Vezzulli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy
| | - Macit Ilkit
- University of Çukurova Sarıçam, Adana, Turkey
| | | | | | | |
Collapse
|
24
|
Cogliati M, Prigitano A, Esposto MC, Romanò L, Grancini A, Zani A, Tortorano AM. Epidemiological trends of cryptococcosis in Italy: Molecular typing and susceptibility pattern of Cryptococcus neoformans isolates collected during a 20-year period. Med Mycol 2019; 56:963-971. [PMID: 29373716 DOI: 10.1093/mmy/myx152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
In the present study clinical data and isolates from cases of cryptococcosis recorded during clinical surveys carried out in Italy from 1997 to 2016, were investigated. Molecular typing and antifungal susceptibility testing were performed in order to delineate the epidemiological trend of cryptococcosis in Italy and to define wild-type population for four different antifungal compounds. During the studied period, a total of 302 cases collected from 32 centers of 11 Italian regions were recorded. Analysis of clinical data showed a significant increase of frequency (from 7% to 38%) of cryptococcosis in human immunodeficiency virus (HIV)-negative patients primarily with hematologic malignancies and solid organ transplantations. The prevalence of the molecular types has significantly changed during the study period, showing an increase of VNIII isolates from 11% to 41% in HIV-negative patients, and a decrease of VNIV isolates from 36% to 16%. Antifungal susceptibility testing allowed us to calculate the epidemiological cut-off for flucytosine (1 mg/l), fluconazole (8 mg/l), itraconazole (0.5 mg/l), and voriconazole (0.25 mg/l). Most of the isolates were wild-type strains. Comparison of the MIC distributions according to molecular types showed that VNIV isolates had lower MICs for fluconazole and itraconazole than the VNI and VIII isolates. The current study emphasizes that the epidemiology of cryptococcosis in Italy has significantly changed over the last decades.
Collapse
Affiliation(s)
- Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Maria Carmela Esposto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Luisa Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Grancini
- UOS Microbiology, Central Laboratory, I.R.C.C.S. Foundation, Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Zani
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Maria Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
25
|
Herkert PF, Meis JF, Lucca de Oliveira Salvador G, Rodrigues Gomes R, Aparecida Vicente V, Dominguez Muro M, Lameira Pinheiro R, Lopes Colombo A, Vargas Schwarzbold A, Sakuma de Oliveira C, Simão Ferreira M, Queiroz-Telles F, Hagen F. Molecular characterization and antifungal susceptibility testing of Cryptococcus neoformans sensu stricto from southern Brazil. J Med Microbiol 2018; 67:560-569. [PMID: 29461182 DOI: 10.1099/jmm.0.000698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Cryptococcosis is acquired from the environment by the inhalation of Cryptococcus cells and may establish from an asymptomatic latent infection into pneumonia or meningoencephalitis. The genetic diversity of a Cryptococcus neoformans species complex has been investigated by several molecular tools, such as multi-locus sequence typing, amplified fragment length polymorphism (AFLP), restriction fragment length polymorphism and microsatellite analysis. This study aimed to investigate the genotype distributions and antifungal susceptibility profiles of C. neoformans sensu lato isolates from southern Brazil. METHODOLOGY We studied 219 C. neoformans sensu lato isolates with mating- and serotyping, AFLP fingerprinting, microsatellite typing and antifungal susceptibility testing.Results/Key findings. Among the isolates, 136 (69 %) were from HIV-positive patients. Only C. neoformans mating-type α and serotype A were observed. AFLP fingerprinting analysis divided the isolates into AFLP1/VNI (n=172; 78.5 %), AFLP1A/VNII (n=19; 8.7 %), AFLP1B/VNII (n=4; 1.8 %) and a new AFLP pattern AFLP1C (n=23; 10.5 %). All isolates were susceptible to tested antifungals and no correlation between antifungal susceptibility and genotypes was observed. Through microsatellite analysis, most isolates clustered in a major microsatellite complex and Simpson's diversity index of this population was D=0.9856. CONCLUSION The majority of C. neoformans sensu stricto infections occurred in HIV-positive patients. C. neoformans AFLP1/VNI was the most frequent genotype and all antifungal drugs had high in vitro activity against this species. Microsatellite analyses showed a high genetic diversity within the regional C. neoformans sensu stricto population, and correlation between environmental and clinical isolates, as well as a temporal and geographic relationship.
Collapse
Affiliation(s)
- Patricia Fernanda Herkert
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | | | - Renata Rodrigues Gomes
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil.,Department of Biological Science, State University of Parana/Campus Paranaguá, Paranaguá, PR, Brazil
| | - Vania Aparecida Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Marisol Dominguez Muro
- Laboratory of Mycology, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | | | | | | | - Carla Sakuma de Oliveira
- Hospital Universitário do Oeste do Paraná, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | | | - Flávio Queiroz-Telles
- Comunnitarian Health Department, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Ferry Hagen
- Centre of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.,Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Vreulink JM, Khayhan K, Hagen F, Botes A, Moller L, Boekhout T, Vismer H, Botha A. Presence of pathogenic cryptococci on trees situated in two recreational areas in South Africa. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Evans SJM, Jones K, Moore AR. Atypical Morphology and Disparate Speciation in a Case of Feline Cryptococcosis. Mycopathologia 2017; 183:479-484. [PMID: 28756537 DOI: 10.1007/s11046-017-0183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Abstract
A 6-year-old, spayed female cat was presented with acute respiratory signs and pleural effusion. Computed tomography scan revealed a large, lobulated mass effect in the ventral right hemithorax with concurrent sternal lymphadenopathy. A cytologic sample of the mass contained pyogranulomatous inflammation, necrotic material, and abundant yeast structures that lacked a distinct capsule and demonstrated rare pseudohyphal forms. Fungal culture and biochemical testing identified the yeast as Cryptococcus albidus, with susceptibility to all antifungal agents tested. However, subsequent 18S PCR identified 99% homology with a strain of Cryptococcus neoformans and only 92% homology with C. albidus. The patient responded well to fluconazole therapy unlike the only known previous report of C. albidus in a cat. The unusual cytologic morphology in this case underscores the need for ancillary testing apart from microscopy for fungal identification. Though C. albidus should be considered as a potential feline pathogen, confirmation with PCR is recommended when such rare non-neoformans species are encountered.
Collapse
Affiliation(s)
- S J M Evans
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, 1644 Campus Delivery, Fort Collins, CO, 80523-1644, USA.
| | - K Jones
- Virginia Veterinary Specialists, Charlottesville, VA, USA
| | - A R Moore
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, 1644 Campus Delivery, Fort Collins, CO, 80523-1644, USA
| |
Collapse
|
28
|
Hatthakaroon C, Pharkjaksu S, Chongtrakool P, Suwannakarn K, Kiratisin P, Ngamskulrungroj P. Molecular epidemiology of cryptococcal genotype VNIc/ST5 in Siriraj Hospital, Thailand. PLoS One 2017; 12:e0173744. [PMID: 28323835 PMCID: PMC5360237 DOI: 10.1371/journal.pone.0173744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022] Open
Abstract
Despite the strong association between Cryptococcus neoformans infection and the Human immunodeficiency virus (HIV) status of patients globally, most cryptococcosis cases in Far East Asia occur in non-HIV individuals. Molecular epidemiological studies, using multilocus sequence typing (MLST), have shown that more than 95% of cryptococcal strains belong to a specific subtype of VNI. However, this association has never been specifically examined in other parts of Asia. Therefore, in this study, we investigated the VNIc/ST5 genotype distribution among cryptococcosis patients in Thailand. Fifty-one C. neoformans isolates were collected from clinical samples in Siriraj Hospital, Bangkok, Thailand. The strains were predominantly isolated from HIV-positive patients (88.57%) and all were molecular type VNI MATα. An MLST analysis identified five sequence types (ST) in Siriraj Hospital, of which ST4 (45.10%) and ST6 (35.29%) were most common, and ST5 (15.69%), ST32 (1.96%), and ST93 (1.96) were less common. Contrary to reports from Far East Asia, ST5 was predominantly (83.33%) found in HIV patients (P = 0.657), and there was no significant change in the prevalence of ST5 over the past 10 years (P = 0.548). A further analysis of comorbidities showed higher morbidity and delays in the cryptococcal diagnosis in patients with tuberculosis coinfection or without HIV. Our study suggests that although the Thai population is genetically closely related to the Far East Asian population, ST5 is not associated with non-HIV status in Thailand. Therefore, this association may not be related to the host’s genetic background. However, its mechanism remains unclear.
Collapse
Affiliation(s)
- Chanin Hatthakaroon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Bangkok, Thailand
| |
Collapse
|
29
|
Cogliati M, Zani A, Rickerts V, McCormick I, Desnos-Ollivier M, Velegraki A, Escandon P, Ichikawa T, Ikeda R, Bienvenu AL, Tintelnot K, Tore O, Akcaglar S, Lockhart S, Tortorano AM, Varma A. Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 2016; 87:22-9. [PMID: 26768709 DOI: 10.1016/j.fgb.2016.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans var. neoformans (serotype D) represents about 30% of the clinical isolates in Europe and is present less frequently in the other continents. It is the prevalent etiological agent in primary cutaneous cryptococcosis as well as in cryptococcal skin lesions of disseminated cryptococcosis. Very little is known about the genotypic diversity of this Cryptococcus subtype. The aim of this study was to investigate the genotypic diversity among a set of clinical and environmental C. neoformans var. neoformans isolates and to evaluate the relationship between genotypes, geographical origin and clinical manifestations. A total of 83 globally collected C. neoformans var. neoformans isolates from Italy, Germany, France, Belgium, Denmark, Greece, Turkey, Thailand, Japan, Colombia, and the USA, recovered from different sources (primary and secondary cutaneous cryptococcosis, disseminated cryptococcosis, the environment, and animals), were included in the study. All isolates were confirmed to belong to genotype VNIV by molecular typing and they were further investigated by MLST analysis. Maximum likelihood phylogenetic as well as network analysis strongly suggested the existence of a recombinant rather than a clonal population structure. Geographical origin and source of isolation were not correlated with a specific MLST genotype. The comparison with a set of outgroup C. neoformans var. grubii isolates provided clear evidence that the two varieties have different population structures.
Collapse
Affiliation(s)
- Massimo Cogliati
- Lab. Micologia Medica, Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy.
| | - Alberto Zani
- Lab. Micologia Medica, Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | | | - Ilka McCormick
- Section Mycology, Robert-Koch Institute, Berlin, Germany
| | - Marie Desnos-Ollivier
- Unité de Mycologie Moléculaire, Centre National de Référence Mycoses invasives et Antifongiques, Institut Pasteur, Paris, France
| | - Aristea Velegraki
- Dept. of Microbiology, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Patricia Escandon
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Tomoe Ichikawa
- Dept. of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo, Japan
| | - Reiko Ikeda
- Dept. of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo, Japan
| | - Anne-Lise Bienvenu
- Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, France; Malaria Research Unit, Université de Lyon, Lyon, France
| | | | - Okan Tore
- Dept. of Medical Microbiology, School of Medicine, Uludag University, Bursa, Turkey
| | - Sevim Akcaglar
- Dept. of Medical Microbiology, School of Medicine, Uludag University, Bursa, Turkey
| | - Shawn Lockhart
- Antifungal and Fungal Reference Laboratories, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna Maria Tortorano
- Lab. Micologia Medica, Dip. Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Ashok Varma
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
30
|
Iatta R, Immediato D, Puttilli MR, Danesi P, Passantino G, Parisi A, Mallia E, Otranto D, Cafarchia C. Cryptococcus neoformans in the respiratory tract of squirrels, Callosciurus finlaysonii (Rodentia, Sciuridae). Med Mycol 2015; 53:666-73. [PMID: 26229151 DOI: 10.1093/mmy/myv045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 11/13/2022] Open
Abstract
Cryptococcosis is a fungal disease acquired from the environment, for which animals may serve as sentinels for human exposure. The occurrence of Cryptococcus spp. in the respiratory tract of 125 squirrels, Callosciurus finlaysonii, trapped in Southern Italy, was assessed. Upon examination of nasal swabs and lung tissue from each individual, a total of 13 (10.4%) animals scored positive for yeasts, 7 for Cryptococcus neoformans (C.n.) (5.6%) and 6 for other yeasts (4.8%). C.n. was isolated from the nostrils and lungs, with a high population size in nostrils. Two C.n. molecular types, VNI and VNIV, were identified, with C.n. var. grubii VNI the most prevalent. Phylogenetic analyses of ITS+ and URA5 sequences revealed that C.n. isolates were genetically similar to isolates from a range of geographical areas and hosts. Results suggest that C.n. can colonize or infect the respiratory tract of C. finlaysonii. The high occurrence and level of colonization of nasal cavities might be an indicator of environmental exposure to high levels of airborne microorganism. The close phylogenetic relationship of C.n. strains from squirrels with those from human and other animal hosts suggests a potential role for these animals as "sentinels" for human exposure.
Collapse
Affiliation(s)
- Roberta Iatta
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| | - Davide Immediato
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| | | | - Patrizia Danesi
- Istituto zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Bari, Italy
| | - Egidio Mallia
- Parco Regionale Gallipoli Cognato e Piccole Dolomiti Lucane, Basilicata, Matera, Italy
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Italy
| |
Collapse
|
31
|
Maestrale C, Masia M, Pintus D, Lollai S, Kozel TR, Gates-Hollingsworth MA, Cancedda MG, Cabras P, Pirino S, D'Ascenzo V, Ligios C. Genetic and pathological characteristics of Cryptococcus gattii and Cryptococcus neoformans var. neoformans from meningoencephalitis in autochthonous goats and mouflons, Sardinia, Italy. Vet Microbiol 2015; 177:409-13. [PMID: 25840469 DOI: 10.1016/j.vetmic.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 11/25/2022]
Abstract
In this study, we examined in Sardinia the brain of 555 autochthonous sheep, 50 goats, and 4 mouflons which were found affected by neurological signs. We found 6 goats and one mouflon with meningoencephalitis caused by Cryptococcus sp. There was no evidence of cryptococcal infections in any of the examined sheep. MLST genotyping on Cryptococcus sp. isolates identified Cryptococcus gatti genotype AFLP4/VGI and Cryptococcus neoformans var. neoformans genotype AFLP2/VNIV. Phylogenetically, all Cryptococcus gattii isolates fell within the autochthonous animal, human and environmental Mediterranean isolate cluster, forming a distinct branch along with environmental strains from Alicante, in the southern Mediterranean coast of Spain.
Collapse
Affiliation(s)
- Caterina Maestrale
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Mariangela Masia
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Stefano Lollai
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | | | | | - Maria Giovanna Cancedda
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Pierangela Cabras
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Salvatore Pirino
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, via Vienna 1, 07100 Sassari, Italy.
| | - Vittoria D'Ascenzo
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, G.Pegreffi, via Duca degli Abruzzi 8, 07100 Sassari, Italy.
| |
Collapse
|
32
|
Phylogenetic analysis of phenotypically characterized Cryptococcus laurentii isolates reveals high frequency of cryptic species. PLoS One 2014; 9:e108633. [PMID: 25251413 PMCID: PMC4177401 DOI: 10.1371/journal.pone.0108633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/22/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. METHODS In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. RESULTS BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99-100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. CONCLUSIONS Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.
Collapse
|