1
|
Li G, Wang L, Zhang H, Luan Y, Sun Q, Duo L. Study on the Role of ampG in the Regulation of Plasmid-Mediated ampC -Induced Expression in Klebsiella pneumoniae. Infect Drug Resist 2023; 16:5587-5598. [PMID: 37645559 PMCID: PMC10461740 DOI: 10.2147/idr.s421598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Objective In this study, we constructed ampG knock-out and knock-in strains from a clinically isolated Kp1strain carrying ampR-ampC in its plasmid and compared them with the Kp NTUH-K2044 strain to investigate the relationship between ampG and ampR-ampC-induced expression. Methods We created the ampG gene deletion mutant strains Kp1-ΔampG and Kp NTUH-K2044-ΔampG with pKO3-km plasmid using homologous recombination technology. We constructed the Kp NTUH-K2044-RC and Kp NTUH-K2044-ΔampG-RC drug resistance model strains with plasmid pACYC184. We constructed the ampG knock-in strains by introducing the ampG genes of Kp1, Enterobacter cloacae 029M, Pseudomonas aeruginosa PAO1, Escherichia coli ATCC25922, and Salmonella typhimurium LT2 into the ampG gene-deleted strains with carrier pet-30a. Real-time polymerase chain reaction (real-time PCR) was used to detect the relative expressions of ampC and ampG mRNAs. Results Compared with Kp1, the induction phenotype of the ampC of Kp1-ΔampG strain disappeared, the ampC expression was reduced, and the minimal inhibitory concentration (MIC) values of cefoxitin and ceftazidime significant decrease from 128 μg/mL to 1 μg/mL. Based on Kp1, five strain were successfully constructed to complement the ampG genes from five knock-in strain, and all of the above complemented strains showed inducible expression of ampC and restored the expression of ampG to varying degrees, as well as restored resistance to the antimicrobial drugs cefoxitin and ceftazidime (P < 0.05). The ampC and ampG genes were barely expressed in Kp NTUH-K2044-ΔampG-RC when compared with Kp NTUH-K2044-RC. The expressions of ampG and ampC in each knock-in strain were recovered, the induction phenotype of ampC was restored, and the MIC values of cefoxitin and ceftazidime were increased. (P < 0.05). Conclusion In this study, we found that ampG was an essential regulator for the plasmid-mediated ampC-induced expression in K. pneumoniae.
Collapse
Affiliation(s)
- Guiling Li
- Department of Clinical Laboratory, the Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Li Wang
- Department of Clinical Laboratory, School of Medicine, Chengdu Women’s and Children’s Central Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, People’s Republic of China
| | - Heguang Zhang
- Department of Clinical Laboratory, the Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Ying Luan
- Department of Clinical Laboratory, the Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qi Sun
- Department of Clinical Laboratory, the Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Libo Duo
- Department of Clinical Laboratory, the Second Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| |
Collapse
|
2
|
Gaougaou G, Ben-Fadhel Y, Déziel E, Lacroix M. Effect of β-lactam antibiotic resistance gene expression on the radio-resistance profile of E. coli O157:H7. Heliyon 2018; 4:e00999. [PMID: 30534620 PMCID: PMC6278725 DOI: 10.1016/j.heliyon.2018.e00999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Some pathogens might develop favorable global adaptation in response to certain stress treatments resulting in enhanced virulence and/or resistance to a different stress. β-lactam resistance, as well as ampC and ampG genes involved in this resistance, were studied to evaluate their possible role in Escherichia coli O157:H7 (E. coli) radioresistance. E. coli adapted to 25, 15 or 7 μg/mL of kanamycin or carbenicillin, were produced and treated with sensitization (0.4 kGy) or lethal (1.5 kGy) irradiation doses. In E. coli O157:H7, irradiation treatment at 0.4 kGy dose increased ampC and ampG expression respectively by 1.6 and 2-fold in the wild type strain (Wt) but up to by 2.4 and 3.4-fold when the strain was beforehand adapted to 25 μg/mL of carbenicillin (Carb25). Accordingly, ΔampC and ΔampG mutants and E. coli adapted to 25 μg/mL of kanamycin were more sensitive to 0.4 kGy treatment than Wt. While, E. coli Carb25 or overexpression of ampC and ampG provided complete resistance to 0.4 kGy and were even able to survive and grow after exposure to a normally lethal 1.5 kGy irradiation dose. We further noticed that these strains can tolerate other stresses like oxidative, cold and heat shocks. This demonstrates that carbenicillin adaptation promotes resistance to γ-irradiation and to other stresses, likely at least through increased AmpC and AmpG expression. These results are important for the food industry and particularly when considering the use of irradiation for food preservation of meat obtained directly from animals fed β-lactam antibiotics.
Collapse
Affiliation(s)
- Ghizlane Gaougaou
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier, Institute of Nutraceutical and Functional Foods, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Yosra Ben-Fadhel
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier, Institute of Nutraceutical and Functional Foods, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier, Institute of Nutraceutical and Functional Foods, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
3
|
Li P, Ying J, Yang G, Li A, Wang J, Lu J, Wang J, Xu T, Yi H, Li K, Jin S, Bao Q, Zhang K. Structure-Function Analysis of the Transmembrane Protein AmpG from Pseudomonas aeruginosa. PLoS One 2016; 11:e0168060. [PMID: 27959942 PMCID: PMC5154545 DOI: 10.1371/journal.pone.0168060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/24/2016] [Indexed: 01/15/2023] Open
Abstract
AmpG is a transmembrane protein with permease activity that transports meuropeptide from the periplasm to the cytoplasm, which is essential for the induction of the ampC encoding β-lactamase. To obtain new insights into the relationship between AmpG structure and function, comparative genomics analysis, secondary and tertiary structure modeling, site-directed mutational analyses and genetic complementation experiments were performed in this study. AmpGs from different genera of bacteria (Escherichia coli, Vibrio cholerae and Acinetobacter baumannii) could complement AmpG function in Pseudomonas aeruginosa. The minimal inhibitory concentration (MIC) to ampicillin is 512 μg/ml for wild type strain PAO1, while it is 32 μg/ml for an ampG deletion mutant strain (PAO1ΔampG) with a corresponding decrease in the activity of the ampC-encoded β-lactamase. Site-directed mutagenesis of conserved AmpG residues (G29, A129, Q131 and A197) resulted in a loss of function, resulting in a loss of resistance to ampicillin in PAO1ΔampG. The G29A, G29V, A129T, A129V, A129D, A197S and A197D mutants had lower resistance to ampicillin and significantly decreased activity of the AmpC β-lactamase. The G29A, G29V, A129V, A197S and A197D mutants had decreased ampG mRNA transcript levels. The A129T and A129D mutants had normal ampG mRNA transcript levels, but the function of the protein was drastically reduced. Our experimental results demonstrate that the conserved amino acids played essential roles in maintaining the function of AmpG. Combined with the AmpG structural information, these critical amino acids can be targeted for the development of new anti-bacterial agents.
Collapse
Affiliation(s)
- Peizhen Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Jun Ying
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Guangjian Yang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Aifang Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- School of Medicine, Lishui College, Lishui, China
| | - Junrong Wang
- Wenling Women’s & Children’s Hospital, Wenling, China
| | - Teng Xu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Huiguang Yi
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
- * E-mail: (KZ); (QB)
| | - Kaibo Zhang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
- School of Medicine, Lishui College, Lishui, China
- * E-mail: (KZ); (QB)
| |
Collapse
|
4
|
Yang TC, Chen TF, Tsai JJ, Hu RM. NagZ is required for beta-lactamase expression and full pathogenicity in Xanthomonas campestris pv. campestris str. 17. Res Microbiol 2014; 165:612-9. [DOI: 10.1016/j.resmic.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/17/2023]
|