1
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: the non-essential PotABCD transporter. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910617 PMCID: PMC8744998 DOI: 10.1099/mic.0.001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyamines constitute a group of organic polycations positively charged at physiological pH. They are involved in a large variety of biological processes, including the protection against physiological stress. In this study, we show that the genome of Streptococcus agalactiae, a commensal bacterium of the intestine and the vagina and one of the most common agents responsible of neonate infections, does not encode proteins homologous to the specific enzymes involved in the known polyamine synthetic pathways. This lack of biosynthetic capability was verified experimentally by TLC analysis of the intracellular content of S. agalactiae grown in the absence of polyamines. However, similar analyses showed that the polyamines spermidine, spermine and putrescine can be imported from the growth media into the bacteria. We found that all strains of S. agalactiae possess the genes encoding the polyamine ABC transporter PotABCD. We demonstrated that these genes form an operon with folK, a gene involved in folate biosynthesis, murB, a gene involved in peptidoglycan biosynthesis, and with clc, a gene encoding a Cl−/H+ antiporter involved in resistance to acid stress in Escherichia coli. Transcription of the potABCD operon is induced by peroxide-induced oxidative stress but not by acidic stress. Spermidine and spermine were found to be inducers of potABCD transcription at pH 7.4 whereas putrescine induces this expression only during peroxide-induced oxidative stress. Using a deletion mutant of potABCD, we were nevertheless unable to associate phenotypic traits to the PotABCD transporter, probably due to the existence of one or more as yet identified transporters with a redundant action.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France.,Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Rim Al Safadi
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Dani Osman
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| |
Collapse
|
2
|
Hsu JF, Tsai MH, Lin LC, Chu SM, Lai MY, Huang HR, Chiang MC, Yang PH, Lu JJ. Genomic Characterization of Serotype III/ST-17 Group B Streptococcus Strains with Antimicrobial Resistance Using Whole Genome Sequencing. Biomedicines 2021; 9:biomedicines9101477. [PMID: 34680594 PMCID: PMC8533585 DOI: 10.3390/biomedicines9101477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Antibiotic-resistant type III/ST-17 Streptococcus agalactiae (group B Streptococcus, GBS) strain is predominant in neonatal invasive GBS diseases. We aimed to investigate the antibiotic resistance profiles and genetic characteristics of type III/ST-17 GBS strains. Methods: A total of 681 non-duplicate GBS isolates were typed (MLST, capsular types) and their antibiotic resistances were performed. Several molecular methods (WGS, PCR, sequencing and sequence analysis) were used to determine the genetic context of antibiotic resistant genes and pili genes. Results: The antibiotic resistant rates were significantly higher in type Ib (90.1%) and type III (71.1%) GBS isolates. WGS revealed that the loss of PI-1 genes and absence of ISSag5 was found in antibiotic-resistant III/ST-17 GBS isolates, which is replaced by a ~75-kb integrative and conjugative element, ICESag37, comprising multiple antibiotic resistance and virulence genes. Among 190 serotype III GBS isolates, the most common pilus island was PI-2b (58.4%) alone, which was found in 81.3% of the III/ST-17 GBS isolates. Loss of PI-1 and ISSag5 was significantly associated with antibiotic resistance (95.5% vs. 27.8%, p < 0.001). The presence of ICESag37 was found in 83.6% of all III/ST-17 GBS isolates and 99.1% (105/106) of the antibiotic-resistant III/ST-17 GBS isolates. Conclusions: Loss of PI-1 and ISSag5, which is replaced by ICESag37 carrying multiple antibiotic resistance genes, accounts for the high antibiotic resistance rate in III/ST-17 GBS isolates. The emerging clonal expansion of this hypervirulent strain with antibiotic resistance after acquisition of ICESag37 highlights the urgent need for continuous surveillance of GBS infections.
Collapse
Affiliation(s)
- Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 638, Taiwan
| | - Lee-Chung Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Mei-Yin Lai
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Hsuan-Rong Huang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Peng-Hong Yang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jang-Jih Lu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 2554); Fax: +886-3-397-1827
| |
Collapse
|
3
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Dual and divergent transcriptional impact of IS1548 insertion upstream of the peptidoglycan biosynthesis gene murB of Streptococcus agalactiae. Gene 2019; 720:144094. [PMID: 31476407 DOI: 10.1016/j.gene.2019.144094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
Abstract
Fourteen different insertion sequences belonging to seven families were identified in the genome of Streptococcus agalactiae. Among them, IS1548, a mobile element of the ISAs1 family, was linked to clonal complex (CC) 19 strains associated with neonatal meningitis and endocarditis. IS1548 impacts S. agalactiae in two reported ways: i) inactivation of virulence genes by insertion in an open reading frame (e.g. hylB or cpsD), ii) positive modulation of the expression of a downstream gene by insertion in an intergenic region (e.g. lmb). We previously identified an unknown integration site of IS1548 in the intergenic region between the folK and the murB genes involved in folate and peptidoglycan biosynthesis, respectively. In this work, we analyzed the prevalence of IS1548 in a large collection of nine hundred and eleven S. agalactiae strains. IS1548 positive strains belong to twenty-nine different sequence types and to ten CCs. The majority of them were, however, clustered within sequence type 19 and sequence type 22, belonging to CC19 and CC22, respectively. In contrast, IS1548 targets the folK-murB intergenic region exclusively in CC19 strains. We evaluated the impact of the insertion of IS1548 on the expression of murB by locating transcriptional promoters influencing its expression in the presence or absence of IS1548 and by comparative β-galactosidase transcriptional fusion assays. We found that in the absence of IS1548, genes involved in folate biosynthesis are co-transcribed with murB. As it was postulated that a folic acid mediated reaction may be involved in cell wall synthesis, this co-transcription could be necessary to synchronize these two processes. The insertion of IS1548 in the folK-murB intergenic region disrupt this co-transcription. Interestingly, we located a promoter at the right end of IS1548 that is able to initiate additional transcripts of murB. The insertion of IS1548 in this region has thus a dual and divergent impact on the expression of murB. By comparative β-galactosidase transcriptional fusion assays, we showed that, consequently, the overall impact of the insertion of IS1548 results in a minor decrease of murB gene transcription. This study provides new insights into gene expression effects mediated by IS1548 in S. agalactiae.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France; Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Rim Al Safadi
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Dani Osman
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France.
| |
Collapse
|
4
|
Intensive targeting of regulatory competence genes by transposable elements in streptococci. Mol Genet Genomics 2018; 294:531-548. [DOI: 10.1007/s00438-018-1507-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
|
5
|
Vasilyeva A, Santos Sanches I, Florindo C, Dmitriev A. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production. PLoS One 2015; 10:e0128426. [PMID: 26047354 PMCID: PMC4457541 DOI: 10.1371/journal.pone.0128426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human.
Collapse
Affiliation(s)
- Anastasia Vasilyeva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Ilda Santos Sanches
- Department of Life Sciences, Centro de Recursos Microbiológicos (CREM) and Research Unit on Applied Molecular Biosciences (UCIBIO, REQUIMTE), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- * E-mail:
| | - Carlos Florindo
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexander Dmitriev
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
- Department of Fundamental Problems of Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
6
|
Fléchard M, Gilot P. Physiological impact of transposable elements encoding DDE transposases in the environmental adaptation of Streptococcus agalactiae. Microbiology (Reading) 2014; 160:1298-1315. [DOI: 10.1099/mic.0.077628-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have referenced and described Streptococcus agalactiae transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (TnGBSs). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect S. agalactiae in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the scpB–lmB genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify S. agalactiae behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs in vivo, suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of S. agalactiae to reach different niches within its host and ensure the ‘success’ of the infectious process.
Collapse
Affiliation(s)
- Maud Fléchard
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Philippe Gilot
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
- Université de Tours, UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, F-37032 Tours, France
| |
Collapse
|
7
|
Fléchard M, Rosenau A, Mereghetti L, Gilot P. Polymerase chain reaction with insertion sequence-specific and -unrelated primers: a new tool for the identification of IS1548 insertion targets in Streptococcus agalactiae. J Microbiol Methods 2013; 94:22-4. [PMID: 23619169 DOI: 10.1016/j.mimet.2013.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
We developed a PCR method with outward insertion sequence-specific and -unrelated primers to identify IS1548 targets in the genome of unsequenced Streptococcus agalactiae strains. Our rapid and easy method allowed the identification of previously known but also of yet unnoticed integration sites in the three clinical isolates tested.
Collapse
Affiliation(s)
- Maud Fléchard
- Équipe "Bactéries et Risque Materno-Foetal", UMR1282 Infectiologie et Santé Publique, Université de Tours, F-37032 Tours, France.
| | | | | | | |
Collapse
|