1
|
Bourgade B, Islam MA. Progresses and challenges of engineering thermophilic acetogenic cell factories. Front Microbiol 2024; 15:1476253. [PMID: 39282569 PMCID: PMC11392765 DOI: 10.3389/fmicb.2024.1476253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Thermophilic acetogens are gaining recognition as potent microbial cell factories, leveraging their unique metabolic capabilities to drive the development of sustainable biotechnological processes. These microorganisms, thriving at elevated temperatures, exhibit robust carbon fixation abilities via the linear Wood-Ljungdahl pathway to efficiently convert C1 substrates, including syngas (CO, CO2 and H2) from industrial waste gasses, into acetate and biomass via the central metabolite acetyl-CoA. This review summarizes recent advancements in metabolic engineering and synthetic biology efforts that have expanded the range of products derived from thermophilic acetogens after briefly discussing their autotrophic metabolic diversity. These discussions highlight their potential in the sustainable bioproduction of industrially relevant compounds. We further review the remaining challenges for implementing efficient and complex strain engineering strategies in thermophilic acetogens, significantly limiting their use in an industrial context.
Collapse
Affiliation(s)
- Barbara Bourgade
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
2
|
Zhang JZ, Li YZ, Xi ZN, Gao HP, Zhang Q, Liu LC, Li FL, Ma XQ. Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals. Front Bioeng Biotechnol 2024; 12:1395540. [PMID: 39055341 PMCID: PMC11269201 DOI: 10.3389/fbioe.2024.1395540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Acetogenic bacteria (acetogens) are a class of microorganisms with conserved Wood-Ljungdahl pathway that can utilize CO and CO2/H2 as carbon source for autotrophic growth and convert these substrates to acetate and ethanol. Acetogens have great potential for the sustainable production of biofuels and bulk biochemicals using C1 gases (CO and CO2) from industrial syngas and waste gases, which play an important role in achieving carbon neutrality. In recent years, with the development and improvement of gene editing methods, the metabolic engineering of acetogens is making rapid progress. With introduction of heterogeneous metabolic pathways, acetogens can improve the production capacity of native products or obtain the ability to synthesize non-native products. This paper reviews the recent application of metabolic engineering in acetogens. In addition, the challenges of metabolic engineering in acetogens are indicated, and strategies to address these challenges are also discussed.
Collapse
Affiliation(s)
- Jun-Zhe Zhang
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Zhen Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ning Xi
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hui-Peng Gao
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Quan Zhang
- Sinopec Dalian (Fushun) Research Institute of Petroleum and Petrochemicals, Dalian, China
| | - Li-Cheng Liu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Fu-Li Li
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xiao-Qing Ma
- Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| |
Collapse
|
3
|
Kato J, Fujii T, Kato S, Wada K, Watanabe M, Nakamichi Y, Aoi Y, Morita T, Murakami K, Nakashimada Y. Genetic engineering of a thermophilic acetogen, Moorella thermoacetica Y72, to enable acetoin production. Front Bioeng Biotechnol 2024; 12:1398467. [PMID: 38812916 PMCID: PMC11133584 DOI: 10.3389/fbioe.2024.1398467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Acetogens are among the key microorganisms involved in the bioproduction of commodity chemicals from diverse carbon resources, such as biomass and waste gas. Thermophilic acetogens are particularly attractive because fermentation at higher temperatures offers multiple advantages. However, the main target product is acetic acid. Therefore, it is necessary to reshape metabolism using genetic engineering to produce the desired chemicals with varied carbon lengths. Although such metabolic engineering has been hampered by the difficulty involved in genetic modification, a model thermophilic acetogen, M. thermoacetica ATCC 39073, is the case with a few successful cases of C2 and C3 compound production, other than acetate. This brief report attempts to expand the product spectrum to include C4 compounds by using strain Y72 of Moorella thermoacetica. Strain Y72 is a strain related to the type strain ATCC 39073 and has been reported to have a less stringent restriction-modification system, which could alleviate the cumbersome transformation process. A simplified procedure successfully introduced a key enzyme for acetoin (a C4 chemical) production, and the resulting strains produced acetoin from sugars and gaseous substrates. The culture profile revealed varied acetoin yields depending on the type of substrate and culture conditions, implying the need for further engineering in the future. Thus, the use of a user-friendly chassis could benefit the genetic engineering of M. thermoacetica.
Collapse
Affiliation(s)
- Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masahiro Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan
| | - Yusuke Nakamichi
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Hiroshima, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
4
|
Kato J, Matsuo T, Takemura K, Kato S, Fujii T, Wada K, Nakamichi Y, Watanabe M, Aoi Y, Morita T, Murakami K, Nakashimada Y. Isopropanol production via the thermophilic bioconversion of sugars and syngas using metabolically engineered Moorella thermoacetica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:13. [PMID: 38281982 PMCID: PMC10823632 DOI: 10.1186/s13068-024-02460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Isopropanol (IPA) is a commodity chemical used as a solvent or raw material for polymeric products, such as plastics. Currently, IPA production depends largely on high-CO2-emission petrochemical methods that are not sustainable. Therefore, alternative low-CO2 emission methods are required. IPA bioproduction using biomass or waste gas is a promising method. RESULTS Moorella thermoacetica, a thermophilic acetogenic microorganism, was genetically engineered to produce IPA. A metabolic pathway related to acetone reduction was selected, and acetone conversion to IPA was achieved via the heterologous expression of secondary alcohol dehydrogenase (sadh) in the thermophilic bacterium. sadh-expressing strains were combined with acetone-producing strains, to obtain an IPA-producing strain. The strain produced IPA as a major product using hexose and pentose sugars as substrates (81% mol-IPA/mol-sugar). Furthermore, IPA was produced from CO, whereas acetate was an abundant byproduct. Fermentation using syngas containing both CO and H2 resulted in higher IPA production at the specific rate of 0.03 h-1. The supply of reducing power for acetone conversion from the gaseous substrates was examined by supplementing acetone to the culture, and the continuous and rapid conversion of acetone to IPA showed a sufficient supply of NADPH for Sadh. CONCLUSIONS The successful engineering of M. thermoacetica resulted in high IPA production from sugars. M. thermoacetica metabolism showed a high capacity for acetone conversion to IPA in the gaseous substrates, indicating acetone production as the bottleneck in IPA production for further improving the strain. This study provides a platform for IPA production via the metabolic engineering of thermophilic acetogens.
Collapse
Affiliation(s)
- Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Takeshi Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yusuke Nakamichi
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Masahiro Watanabe
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8530, Japan.
| |
Collapse
|
5
|
Jia D, Deng W, Hu P, Jiang W, Gu Y. Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications. BIORESOUR BIOPROCESS 2023; 10:61. [PMID: 38647965 PMCID: PMC10992200 DOI: 10.1186/s40643-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 04/25/2024] Open
Abstract
In the context of the rapid development of low-carbon economy, there has been increasing interest in utilizing naturally abundant and cost-effective one-carbon (C1) substrates for sustainable production of chemicals and fuels. Moorella thermoacetica, a model acetogenic bacterium, has attracted significant attention due to its ability to utilize carbon dioxide (CO2) and carbon monoxide (CO) via the Wood-Ljungdahl (WL) pathway, thereby showing great potential for the utilization of C1 gases. However, natural strains of M. thermoacetica are not yet fully suitable for industrial applications due to their limitations in carbon assimilation and conversion efficiency as well as limited product range. Over the past decade, progresses have been made in the development of genetic tools for M. thermoacetica, accelerating the understanding and modification of this acetogen. Here, we summarize the physiological and metabolic characteristics of M. thermoacetica and review the recent advances in engineering this bacterium. Finally, we propose the future directions for exploring the real potential of M. thermoacetica in industrial applications.
Collapse
Affiliation(s)
- Dechen Jia
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wangshuying Deng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoquan Road, Shanghai, 200438, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
6
|
Enabling Ethanologenesis in Moorella thermoacetica through Construction of a Replicating Shuttle Vector. FERMENTATION 2022. [DOI: 10.3390/fermentation8110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Replicating plasmid shuttle vectors are key tools for efficient genetic and metabolic engineering applications, allowing the development of sustainable bioprocesses using non-model organisms with unique metabolic capabilities. To date, very limited genetic manipulation has been achieved in the thermophilic acetogen, Moorella thermoacetica, partly due to the lack of suitable shuttle vectors. However, M. thermoacetica has considerable potential as an industrial chassis organism, which can only be unlocked if reliable and effective genetic tools are in place. This study reports the construction of a replicating shuttle vector for M. thermoacetica through the identification and implementation of a compatible Gram-positive replicon to allow plasmid maintenance within the host. Although characterisation of plasmid behaviour proved difficult, the designed shuttle vector was subsequently applied for ethanologenesis, i.e., ethanol production in this organism. The non-native ethanologenesis in M. thermoacetica was achieved via plasmid-borne overexpression of the native aldh gene and heterologous expression of Clostridium autoethanogenum adhE1 gene. This result demonstrates the importance of the developed replicating plasmid vector for genetic and metabolic engineering efforts in industrially important M. thermoacetica.
Collapse
|
7
|
Kobayashi S, Kato J, Wada K, Takemura K, Kato S, Fujii T, Iwasaki Y, Aoi Y, Morita T, Matsushika A, Murakami K, Nakashimada Y. Reversible Hydrogenase Activity Confers Flexibility to Balance Intracellular Redox in Moorella thermoacetica. Front Microbiol 2022; 13:897066. [PMID: 35633713 PMCID: PMC9133594 DOI: 10.3389/fmicb.2022.897066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen (H2) converted to reducing equivalents is used by acetogens to fix and metabolize carbon dioxide (CO2) to acetate. The utilization of H2 enables not only autotrophic growth, but also mixotrophic metabolism in acetogens, enhancing carbon utilization. This feature seems useful, especially when the carbon utilization efficiency of organic carbon sources is lowered by metabolic engineering to produce reduced chemicals, such as ethanol. The potential advantage was tested using engineered strains of Moorella thermoacetica that produce ethanol. By adding H2 to the fructose-supplied culture, the engineered strains produced increased levels of acetate, and a slight increase in ethanol was observed. The utilization of a knockout strain of the major acetate production pathway, aimed at increasing the carbon flux to ethanol, was unexpectedly hindered by H2-mediated growth inhibition in a dose-dependent manner. Metabolomic analysis showed a significant increase in intracellular NADH levels due to H2 in the ethanol-producing strain. Higher NADH level was shown to be the cause of growth inhibition because the decrease in NADH level by dimethyl sulfoxide (DMSO) reduction recovered the growth. When H2 was not supplemented, the intracellular NADH level was balanced by the reversible electron transfer from NADH oxidation to H2 production in the ethanol-producing strain. Therefore, reversible hydrogenase activity confers the ability and flexibility to balance the intracellular redox state of M. thermoacetica. Tuning of the redox balance is required in order to benefit from H2-supplemented mixotrophy, which was confirmed by engineering to produce acetone.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Junya Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Keisuke Wada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kaisei Takemura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Setsu Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Tatsuya Fujii
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Yuki Iwasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Yoshiteru Aoi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Tomotake Morita
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akinori Matsushika
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Katsuji Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), Higashihiroshima, Japan
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
- *Correspondence: Yutaka Nakashimada,
| |
Collapse
|
8
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
9
|
Rahayu F, Kawai Y, Iwasaki Y, Yoshida K, Kita A, Tajima T, Kato J, Murakami K, Hoshino T, Nakashimada Y. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. BIORESOURCE TECHNOLOGY 2017; 245:1393-1399. [PMID: 28583404 DOI: 10.1016/j.biortech.2017.05.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
A transformant of Moorella thermoacetica was constructed for thermophilic ethanol production from lignocellulosic biomass by deleting two phosphotransacetylase genes, pdul1 and pdul2, and introducing the native aldehyde dehydrogenase gene (aldh) controlled by the promoter from glyceraldehyde-3-phosphate dehydrogenase. The transformant showed tolerance to 540mM and fermented sugars including fructose, glucose, galactose and xylose to mainly ethanol. In a mixed-sugar medium of glucose and xylose, all of the sugars were consumed to produce ethanol at the yield of 1.9mol/mol-sugar. The transformant successfully fermented sugars in hydrolysate prepared through the acid hydrolysis of lignocellulose to ethanol, suggesting that this transformant can be used to ferment the sugars in lignocellulosic biomass for ethanol production.
Collapse
Affiliation(s)
- Farida Rahayu
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Indonesian Sweetener and Fiber Crops Research Institute, Jalan Raya Karangploso Km 9, Malang, East Java 65152, Indonesia
| | - Yuto Kawai
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Yuki Iwasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Koichiro Yoshida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akihisa Kita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Katsuji Murakami
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Tamotsu Hoshino
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
10
|
De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P. Syngas Biorefinery and Syngas Utilization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017. [DOI: 10.1007/10_2017_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Redl S, Sukumara S, Ploeger T, Wu L, Ølshøj Jensen T, Nielsen AT, Noorman H. Thermodynamics and economic feasibility of acetone production from syngas using the thermophilic production host Moorella thermoacetica. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:150. [PMID: 28616074 PMCID: PMC5469130 DOI: 10.1186/s13068-017-0827-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 05/23/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Syngas fermentation is a promising option for the production of biocommodities due to its abundance and compatibility with anaerobic fermentation. Using thermophilic production strains in a syngas fermentation process allows recovery of products with low boiling point from the off-gas via condensation. RESULTS In this study we analyzed the production of acetone from syngas with the hypothetical production host derived from Moorella thermoacetica in a bubble column reactor at 60 °C with respect to thermodynamic and economic feasibility. We determined the cost of syngas production from basic oxygen furnace (BOF) process gas, from natural gas, and from corn stover and identified BOF gas as an economically interesting source for syngas. Taking gas-liquid mass transfer limitations into account, we applied a thermodynamics approach to derive the CO to acetone conversion rate under the process conditions. We estimated variable costs of production of 389 $/t acetone for a representative production scenario from BOF gas with costs for syngas as the main contributor. In comparison, the variable costs of production from natural gas- and corn stover-derived syngas were determined to be higher due to the higher feedstock costs (1724 and 2878 $/t acetone, respectively). CONCLUSION We applied an approach of combining thermodynamic and economic assessment to analyze a hypothetical bioprocess in which the volatile product acetone is produced from syngas with a thermophilic microorganism. Our model allowed us to identify process metrics and quantify the variable production costs for different scenarios. Economical production of bulk chemicals is challenging, making rigorous thermodynamic/economic modeling critical before undertaking an experimental program and as an ongoing guide during the program. We intend this study to give an incentive to apply the demonstrated approach to other bioproduction processes.
Collapse
Affiliation(s)
- Stephanie Redl
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sumesh Sukumara
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tom Ploeger
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | - Liang Wu
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
| | - Torbjørn Ølshøj Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henk Noorman
- DSM Biotechnology Center, PO Box 1, 2600 MA Delft, The Netherlands
- Department of Biotechnology, Technical University Delft, Delft, The Netherlands
| |
Collapse
|
12
|
Homolactic Acid Fermentation by the Genetically Engineered Thermophilic Homoacetogen Moorella thermoacetica ATCC 39073. Appl Environ Microbiol 2017; 83:AEM.00247-17. [PMID: 28159797 DOI: 10.1128/aem.00247-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
For the efficient production of target metabolites from carbohydrates, syngas, or H2-CO2 by genetically engineered Moorella thermoacetica, the control of acetate production (a main metabolite of M. thermoacetica) is desired. Although propanediol utilization protein (PduL) was predicted to be a phosphotransacetylase (PTA) involved in acetate production in M. thermoacetica, this has not been confirmed. Our findings described herein directly demonstrate that two putative PduL proteins, encoded by Moth_0864 (pduL1) and Moth_1181 (pduL2), are involved in acetate formation as PTAs. To disrupt these genes, we replaced each gene with a lactate dehydrogenase gene from Thermoanaerobacter pseudethanolicus ATCC 33223 (T-ldh). The acetate production from fructose as the sole carbon source by the pduL1 deletion mutant was not deficient, whereas the disruption of pduL2 significantly decreased the acetate yield to approximately one-third that of the wild-type strain. The double-deletion (both pduL genes) mutant did not produce acetate but produced only lactate as the end product from fructose. These results suggest that both pduL genes are associated with acetate formation via acetyl-coenzyme A (acetyl-CoA) and that their disruption enables a shift in the homoacetic pathway to the genetically synthesized homolactic pathway via pyruvate.IMPORTANCE This is the first report, to our knowledge, on the experimental identification of PTA genes in M. thermoacetica and the shift of the native homoacetic pathway to the genetically synthesized homolactic pathway by their disruption on a sugar platform.
Collapse
|
13
|
A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii. Appl Environ Microbiol 2016; 82:4421-4428. [PMID: 27208106 DOI: 10.1128/aem.00570-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/10/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Caldicellulosiruptor bescii, an anaerobic Gram-positive bacterium with an optimal growth temperature of 78°C, is the most thermophilic cellulose degrader known. It is of great biotechnological interest, as it efficiently deconstructs nonpretreated lignocellulosic plant biomass. Currently, its genetic manipulation relies on a mutant uracil auxotrophic background strain that contains a random deletion in the pyrF genome region. The pyrF gene serves as a genetic marker to select for uracil prototrophy, and it can also be counterselected for loss via resistance to the compound 5-fluoroorotic acid (5-FOA). To expand the C. bescii genetic tool kit, kanamycin resistance was developed as a selection for genetic manipulation. A codon-optimized version of the highly thermostable kanamycin resistance gene (named Cbhtk) allowed the use of kanamycin selection to obtain transformants of either replicating or integrating vector constructs in C. bescii These strains showed resistance to kanamycin at concentrations >50 μg · ml(-1), whereas wild-type C. bescii was sensitive to kanamycin at 10 μg · ml(-1) In addition, placement of the Cbhtk marker between homologous recombination regions in an integrating vector allowed direct selection of a chromosomal mutation using both kanamycin and 5-FOA. Furthermore, the use of kanamycin selection enabled the targeted deletion of the pyrE gene in wild-type C. bescii, generating a uracil auxotrophic genetic background strain resistant to 5-FOA. The pyrE gene functioned as a counterselectable marker, like pyrF, and was used together with Cbhtk in the ΔpyrE background strain to delete genes encoding lactate dehydrogenase and the CbeI restriction enzyme. IMPORTANCE Caldicellulosiruptor bescii is a thermophilic anaerobic bacterium with an optimal growth temperature of 78°C, and it has the ability to efficiently deconstruct nonpretreated lignocellulosic plant biomass. It is, therefore, of biotechnological interest for genetic engineering applications geared toward biofuel production. The current genetic system used with C. bescii is based upon only a single selection strategy, and this uses the gene involved in a primary biosynthetic pathway. There are many advantages with an additional genetic selection using an antibiotic. This presents a challenge for thermophilic microorganisms, as only a limited number of antibiotics are stable above 50°C, and a thermostable version of the enzyme conferring antibiotic resistance must be obtained. In this work, we have developed a selection system for C. bescii using the antibiotic kanamycin and have shown that, in combination with the biosynthetic gene marker, it can be used to efficiently delete genes in this organism.
Collapse
|
14
|
Breitkopf R, Uhlig R, Drenckhan T, Fischer RJ. Two propanediol utilization-like proteins of Moorella thermoacetica with phosphotransacetylase activity. Extremophiles 2016; 20:653-61. [PMID: 27338272 DOI: 10.1007/s00792-016-0854-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Abstract
Moorella thermoacetica is one of the model acetogenic bacteria for the resolution of the Wood-Ljungdahl (acetyl-CoA) pathway in which CO2 is autotrophically assimilated yielding acetyl-CoA as central intermediate. Its further conversion into acetate relies on subsequent phosphotransacetylase (PTA) and acetate kinase reactions. However, the genome of M. thermoacetica contains no pta homologous gene. It has been speculated that the moth_0864 and moth_1181 gene products sharing similarities with an evolutionarily distinct phosphotransacylase involved in 1,2-propanediol utilization (PDUL) of Salmonella enterica act as PTAs in M. thermoacetica. Here, we demonstrate specific PTA activities with acetyl-CoA as substrate of 9.05 and 2.03 U/mg for the recombinant enzymes PDUL1 (Moth_1181) and PDUL2 (Moth_0864), respectively. Both showed maximal activity at 65 °C and pH 7.6. Native proteins (90 kDa) are homotetramers composed of four subunits with apparent molecular masses of about 23 kDa. Thus, one or both PDULs of M. thermoacetica might act as PTAs in vivo catalyzing the penultimate step of the Wood-Ljungdahl pathway toward the formation of acetate. In silico analysis underlined that up to now beside of M. thermoacetica, only Sporomusa ovata contains only PDUL like class(III)-PTAs but no other phosphotransacetylases or phosphotransbutyrylases (PTBs).
Collapse
Affiliation(s)
- Ronja Breitkopf
- BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ronny Uhlig
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Tina Drenckhan
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Ralf-Jörg Fischer
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
15
|
Nybo SE, Khan NE, Woolston BM, Curtis WR. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 2015; 30:105-120. [PMID: 25959019 DOI: 10.1016/j.ymben.2015.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 12/19/2022]
Abstract
The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms.
Collapse
Affiliation(s)
- S Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, United States
| | - Nymul E Khan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
16
|
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 2014; 196:3303-14. [PMID: 25002540 DOI: 10.1128/jb.01839-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Moorella thermoacetica can grow with H₂ and CO₂, forming acetic acid from 2 CO₂ via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown.
Collapse
|
17
|
Latif H, Zeidan AA, Nielsen AT, Zengler K. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 2014; 27:79-87. [DOI: 10.1016/j.copbio.2013.12.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
|
18
|
Tsukahara K, Kita A, Nakashimada Y, Hoshino T, Murakami K. Genome-guided analysis of transformation efficiency and carbon dioxide assimilation by Moorella thermoacetica Y72. Gene 2013; 535:150-5. [PMID: 24316126 DOI: 10.1016/j.gene.2013.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 10/25/2022]
Abstract
We determined a draft genome sequence for Moorella thermoacetica strain Y72, a syngas-assimilating bacterium with high transformation efficiency. This strain was confirmed to be M. thermoacetica because its overall genome sequence characteristics were similar to those of M. thermoacetica strain ATCC39073. Y72 was confirmed to carry all the genes encoding the enzymes in the reductive acetyl-CoA pathway, with very high similarities to those of ATCC39073. In addition, it was confirmed to assimilate carbon dioxide using this pathway. However, although both Y72 and ATCC39073 carried common genes encoding several enzymes related to the reductive tricarboxylic acid (TCA) cycle, their gene sets were different. Our results suggested that the reason for higher transformation efficiency in Y72 than that in ATCC39073, a reference strain of M. thermoacetica, may be that Y72 possesses only 2 sets of genes considered to be involved in a restriction-modification system, which was half of those found in ATCC39073.
Collapse
Affiliation(s)
- Kenichiro Tsukahara
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Akihisa Kita
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tamotsu Hoshino
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Katsuji Murakami
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| |
Collapse
|