1
|
Kuzmanović N, Wolf J, Will SE, Smalla K, diCenzo GC, Neumann-Schaal M. Diversity and Evolutionary History of Ti Plasmids of "tumorigenes" Clade of Rhizobium spp. and Their Differentiation from Other Ti and Ri Plasmids. Genome Biol Evol 2023; 15:evad133. [PMID: 37463407 PMCID: PMC10410297 DOI: 10.1093/gbe/evad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Agrobacteria are important plant pathogens responsible for crown/cane gall and hairy root diseases. Crown/cane gall disease is associated with strains carrying tumor-inducing (Ti) plasmids, while hairy root disease is caused by strains harboring root-inducing (Ri) plasmids. In this study, we analyzed the sequences of Ti plasmids of the novel "tumorigenes" clade of the family Rhizobiaceae ("tumorigenes" Ti plasmids), which includes two species, Rhizobium tumorigenes and Rhizobium rhododendri. The sequences of reference Ti/Ri plasmids were also included, which was followed by a comparative analysis of their backbone and accessory regions. The "tumorigenes" Ti plasmids have novel opine signatures compared with other Ti/Ri plasmids characterized so far. The first group exemplified by pTi1078 is associated with production of agrocinopine, nopaline, and ridéopine in plant tumors, while the second group comprising pTi6.2 is responsible for synthesis of leucinopine. Bioinformatic and chemical analyses, including opine utilization assays, indicated that leucinopine associated with pTi6.2 most likely has D,L stereochemistry, unlike the L,L-leucinopine produced in tumors induced by reference strains Chry5 and Bo542. Most of the "tumorigenes" Ti plasmids have conjugative transfer system genes that are unusual for Ti plasmids, composed of avhD4/avhB and traA/mobC/parA regions. Next, our results suggested that "tumorigenes" Ti plasmids have a common origin, but they diverged through large-scale recombination events, through recombination with single or multiple distinct Ti/Ri plasmids. Lastly, we showed that Ti/Ri plasmids could be differentiated based on pairwise Mash or average amino-acid identity distance clustering, and we supply a script to facilitate application of the former approach by other researchers.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Urban Green, Braunschweig, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
2
|
Luchetti A, Castellani LG, Toscani AM, Lagares A, Del Papa MF, Torres Tejerizo G, Pistorio M. Characterization of an accessory plasmid of Sinorhizobium meliloti and its two replication-modules. PLoS One 2023; 18:e0285505. [PMID: 37200389 DOI: 10.1371/journal.pone.0285505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Rhizobia are Gram-negative bacteria known for their ability to fix atmospheric N2 in symbiosis with leguminous plants. Current evidence shows that rhizobia carry in most cases a variable number of plasmids, containing genes necessary for symbiosis or free-living, a common feature being the presence of several plasmid replicons within the same strain. For many years, we have been studying the mobilization properties of pSmeLPU88b from the strain Sinorhizobium meliloti LPU88, an isolate from Argentina. To advance in the characterization of pSmeLPU88b plasmid, the full sequence was obtained. pSmeLPU88b is 35.9 kb in size, had an average GC % of 58.6 and 31 CDS. Two replication modules were identified in silico: one belonging to the repABC type, and the other to the repC. The replication modules presented high DNA identity to the replication modules from plasmid pMBA9a present in an S. meliloti isolate from Canada. In addition, three CDS presenting identity with recombinases and with toxin-antitoxin systems were found downstream of the repABC system. It is noteworthy that these CDS present the same genetic structure in pSmeLPU88b and in other rhizobial plasmids. Moreover, in all cases they are found downstream of the repABC operon. By cloning each replication system in suicide plasmids, we demonstrated that each of them can support plasmid replication in the S. meliloti genetic background, but with different stability behavior. Interestingly, while incompatibility analysis of the cloned rep systems results in the loss of the parental module, both obtained plasmids can coexist together.
Collapse
Affiliation(s)
- Abril Luchetti
- Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucas G Castellani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrés Martin Toscani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Antonio Lagares
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Struck B, Schlüter A, Pühler A, Niehaus K, Romero D, Pistorio M, Torres Tejerizo G. RcgA and RcgR, Two Novel Proteins Involved in the Conjugative Transfer of Rhizobial Plasmids. mBio 2022; 13:e0194922. [PMID: 36073816 PMCID: PMC9601222 DOI: 10.1128/mbio.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that are able to establish a nitrogen-fixing symbiotic interaction with leguminous plants. Rhizobia genomes usually harbor several plasmids which can be transferred to other organisms by conjugation. Two main mechanisms of the regulation of rhizobial plasmid transfer have been described: quorum sensing (QS) and the rctA/rctB system. Nevertheless, new genes and molecules that modulate conjugative transfer have recently been described, demonstrating that new actors can tightly regulate the process. In this work, by means of bioinformatics tools and molecular biology approaches, two hypothetical genes are identified as playing key roles in conjugative transfer. These genes are located between conjugative genes of plasmid pRfaLPU83a from Rhizobium favelukesii LPU83, a plasmid that shows a conjugative transfer behavior depending on the genomic background. One of the two mentioned genes, rcgA, is essential for conjugation, while the other, rcgR, acts as an inhibitor of the process. In addition to introducing this new regulatory system, we show evidence of the functions of these genes in different genomic backgrounds and confirm that homologous proteins from non-closely related organisms have the same functions. These findings set up the basis for a new regulatory circuit of the conjugative transfer of plasmids. IMPORTANCE Extrachromosomal DNA elements, such as plasmids, allow for the adaptation of bacteria to new environments by conferring new determinants. Via conjugation, plasmids can be transferred between members of the same bacterial species, different species, or even to organisms belonging to a different kingdom. Knowledge about the regulatory systems of plasmid conjugative transfer is key in understanding the dynamics of their dissemination in the environment. As the increasing availability of genomes raises the number of predicted proteins with unknown functions, deeper experimental procedures help to elucidate the roles of these determinants. In this work, two uncharacterized proteins that constitute a new regulatory circuit with a key role in the conjugative transfer of rhizobial plasmids were discovered.
Collapse
Affiliation(s)
- Lucas G. Castellani
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet F. Nilsson
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ben Struck
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Bielefeld, Germany
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Li M, Chen Q, Wu C, Li Y, Wang S, Chen X, Qiu B, Li Y, Mao D, Lin H, Yu D, Cao Y, Huang Z, Cui C, Zhong Z. A Novel Module Promotes Horizontal Gene Transfer in Azorhizobium caulinodans ORS571. Genes (Basel) 2022; 13:genes13101895. [PMID: 36292780 PMCID: PMC9601964 DOI: 10.3390/genes13101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Azorhizobium caulinodans ORS571 contains an 87.6 kb integrative and conjugative element (ICEAc) that conjugatively transfers symbiosis genes to other rhizobia. Many hypothetical redundant gene fragments (rgfs) are abundant in ICEAc, but their potential function in horizontal gene transfer (HGT) is unknown. Molecular biological methods were employed to delete hypothetical rgfs, expecting to acquire a minimal ICEAc and consider non-functional rgfs as editable regions for inserting genes related to new symbiotic functions. We determined the significance of rgf4 in HGT and identified the physiological function of genes designated rihF1a (AZC_3879), rihF1b (AZC_RS26200), and rihR (AZC_3881). In-frame deletion and complementation assays revealed that rihF1a and rihF1b work as a unit (rihF1) that positively affects HGT frequency. The EMSA assay and lacZ-based reporter system showed that the XRE-family protein RihR is not a regulator of rihF1 but promotes the expression of the integrase (intC) that has been reported to be upregulated by the LysR-family protein, AhaR, through sensing host’s flavonoid. Overall, a conservative module containing rihF1 and rihR was characterized, eliminating the size of ICEAc by 18.5%. We propose the feasibility of constructing a minimal ICEAc element to facilitate the exchange of new genetic components essential for symbiosis or other metabolic functions between soil bacteria.
Collapse
Affiliation(s)
- Mingxu Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuanhui Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyang Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sanle Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuelian Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Lin
- Animal, Plant and Food Inspection Center, Nanjing Customs, No. 39, Chuangzhi Road, Nanjing 210019, China
| | - Daogeng Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Danzhou 571737, China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.H.); (C.C.); Tel.: +86-25-84396645 (Z.H.)
| | - Chunhong Cui
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Z.H.); (C.C.); Tel.: +86-25-84396645 (Z.H.)
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Cervantes L, Miranda-Sánchez F, Torres Tejerizo G, Romero D, Brom S. Plasmid pSfr64a and the symbiotic plasmid pSfr64b of Sinorhizobium fredii GR64 control each other's conjugative transfer through quorum-sensing elements. Plasmid 2019; 106:102443. [PMID: 31689451 DOI: 10.1016/j.plasmid.2019.102443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 09/17/2019] [Indexed: 11/27/2022]
Abstract
Rhizobia are nitrogen-fixing symbionts of plants. Their genomes frequently contain large plasmids, some of which are able to perform conjugative transfer. Plasmid pSfr64a from Sinorhizobium fredii GR64 is a conjugative plasmid, whose transfer is regulated by quorum sensing genes encoded by itself (traR64a, traI64a), in the symbiotic plasmid pSfr64b (traR64b, traI64b), and in the chromosome (ngrI). Also, transfer of pSfr64b requires quorum sensing elements encoded in this plasmid (traR64b, traI64b), in pSfr64a (traR64a), and in the chromosome (ngrI). These results demonstrate that pSfr64a and the symbiotic plasmid depend on each other for conjugative transfer. Plasmid pSfr64a from S. fredii GR64 is unable to transfer from the genomic background of Rhizobium etli CFN42. Our results show that the relaxase of pRet42a is able to process the oriT of pSfr64a, and viceversa, underlining their functional similarity and suggesting that in addition to the external signals, the "cytoplasmic environment" may pose a barrier to plasmid dissemination, even if the plasmids are functional in other aspects.
Collapse
Affiliation(s)
- Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Fabiola Miranda-Sánchez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico; Instituto de Biotecnología y Biología Molecular (IBBM) - CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
6
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Cervantes-De La Luz L, Girard L, Romero D, Brom S. Conjugative transfer between Rhizobium etli endosymbionts inside the root nodule. Environ Microbiol 2019; 21:3430-3441. [PMID: 31037804 DOI: 10.1111/1462-2920.14645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
Since the discovery that biological nitrogen fixation ensues in nodules resulting from the interaction of rhizobia with legumes, nodules were thought to be exclusive for hosting nitrogen-fixing and plant growth promoting bacteria. In this work, we uncover a novel function of nodules, as a niche permissive to acquisition of plasmids via conjugative transfer. We used Rhizobium etli CFN42, which nodulates Phaseolus vulgaris. The genome of R. etli CFN42 contains a chromosome and six plasmids. pRet42a is a conjugative plasmid regulated by Quorum-Sensing (QS), and pRet42d is the symbiotic plasmid. Here, using confocal microscopy and flow cytometry, we show that pRet42a transfers on the root's surface, and unexpectedly, inside the nodules. Conjugation still took place inside nodules, even when it was restricted on the plant surface by placing the QS traI regulator under the promoter of the nitrogenase gene, which is only expressed inside the nodules, or by inhibiting the QS transcriptional induction of transfer genes with a traM antiactivator on an unstable vector maintained on the plant surface and lost inside the nodules. These results conclusively confirm the occurrence of conjugation in these structures, defining them as a protected environment for bacterial diversification.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura Cervantes-De La Luz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
7
|
Castellani LG, Nilsson JF, Wibberg D, Schlüter A, Pühler A, Brom S, Pistorio M, Torres Tejerizo G. Insight into the structure, function and conjugative transfer of pLPU83a, an accessory plasmid of Rhizobium favelukesii LPU83. Plasmid 2019; 103:9-16. [DOI: 10.1016/j.plasmid.2019.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
|
8
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 2017; 91:82-89. [DOI: 10.1016/j.plasmid.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/25/2022]
|
9
|
The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium meliloti: Coming up with New Questions and Answers. Microbiol Spectr 2016; 2. [PMID: 26104371 DOI: 10.1128/microbiolspec.plas-0005-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are Gram-negative Alpha- and Betaproteobacteria living in the underground which have the ability to associate with legumes for the establishment of nitrogen-fixing symbioses. Sinorhizobium meliloti in particular-the symbiont of Medicago, Melilotus, and Trigonella spp.-has for the past decades served as a model organism for investigating, at the molecular level, the biology, biochemistry, and genetics of a free-living and symbiotic soil bacterium of agricultural relevance. To date, the genomes of seven different S. meliloti strains have been fully sequenced and annotated, and several other draft genomic sequences are also available. The vast amount of plasmid DNA that S. meliloti frequently bears (up to 45% of its total genome), the conjugative ability of some of those plasmids, and the extent of the plasmid diversity has provided researchers with an extraordinary system to investigate functional and structural plasmid molecular biology within the evolutionary context surrounding a plant-associated model bacterium. Current evidence indicates that the plasmid mobilome in S. meliloti is composed of replicons varying greatly in size and having diverse conjugative systems and properties along with different evolutionary stabilities and biological roles. While plasmids carrying symbiotic functions (pSyms) are known to have high structural stability (approaching that of chromosomes), the remaining plasmid mobilome (referred to as the non-pSym, functionally cryptic, or accessory compartment) has been shown to possess remarkable diversity and to be highly active in conjugation. In light of the modern genomic and current biochemical data on the plasmids of S. meliloti, the current article revises their main structural components, their transfer and regulatory mechanisms, and their potential as vehicles in shaping the evolution of the rhizobial genome.
Collapse
|
10
|
Tejerizo GT, Bañuelos LA, Cervantes L, Gaytán P, Pistorio M, Romero D, Brom S. Development of molecular tools to monitor conjugative transfer in rhizobia. J Microbiol Methods 2015; 117:155-63. [PMID: 26272377 DOI: 10.1016/j.mimet.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/26/2023]
Abstract
Evolution of bacterial populations has been extensively driven by horizontal transfer events. Conjugative plasmid transfer is considered the principal contributor to gene exchange among bacteria. Several conjugative and mobilizable plasmids have been identified in rhizobia, and two major molecular mechanisms that regulate their transfer have been described, under laboratory conditions. The knowledge of rhizobial plasmid transfer regulation in natural environments is very poor. In this work we developed molecular tools to easily monitor the conjugative plasmid transfer in rhizobia by flow cytometry (FC) or microscopy. 24 cassettes were constructed by combining a variety of promotors, fluorescent proteins and antibiotic resistance genes, and used to tag plasmids and chromosome of donor strains. We were able to detect plasmid transfer after conversion of non-fluorescent recipients into fluorescent transconjugants. Flow cytometry (FC) was optimized to count donor, recipient and transconjugant strains to determine conjugative transfer frequencies. Results were similar, when determined either by FC or by viable counts. Our constructions also allowed the visualization of transconjugants in crosses performed on bean roots. The tools presented here may also be used for other purposes, such as analysis of transcriptional fusions or single-cell tagging. Application of the system will allow the survey of how different environmental conditions or other regulators modulate plasmid transfer in rhizobia.
Collapse
Affiliation(s)
- Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Luis Alfredo Bañuelos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Paul Gaytán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| |
Collapse
|
11
|
López-Fuentes E, Torres-Tejerizo G, Cervantes L, Brom S. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors. Front Microbiol 2015; 5:793. [PMID: 25642223 PMCID: PMC4294206 DOI: 10.3389/fmicb.2014.00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer.
Collapse
Affiliation(s)
- Eunice López-Fuentes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Gonzalo Torres-Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
12
|
Torres Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schlüter A, Pühler A, Lagares A, Romero D, Brom S. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiol Ecol 2014; 88:565-78. [PMID: 24646299 DOI: 10.1111/1574-6941.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Plasmids have played a major role in bacterial evolution, mainly by their capacity to perform horizontal gene transfer (HGT). Their conjugative transfer (CT) properties are usually described in terms of the plasmid itself. In this work, we analyzed structural and functional aspects of the CT of pLPU83a, an accessory replicon from Rhizobium sp. LPU83, able to transfer from its parental strain, from Ensifer meliloti, or from Rhizobium etli. pLPU83a contains a complete set of transfer genes, featuring a particular organization, shared with only two other rhizobial plasmids. These plasmids contain a TraR quorum-sensing (QS) transcriptional regulator, but lack an acyl-homoserine lactone (AHL) synthase gene. We also determined that the ability of pLPU83a to transfer from R. etli CFN42 genomic background was mainly achieved through mobilization, employing the machinery of the endogenous plasmid pRetCFN42a, falling under control of the QS regulators from pRetCFN42a. In contrast, from its native or from the E. meliloti background, pLPU83a utilized its own machinery for conjugation, requiring the plasmid-encoded traR. Activation of TraR seemed to be AHL independent. The results obtained indicate that the CT phenotype of a plasmid is dictated not only by the genes it carries, but by their interaction with its genomic context.
Collapse
Affiliation(s)
- Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México; Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|