1
|
Savková K, Danchenko M, Fabianová V, Bellová J, Bencúrová M, Huszár S, Korduláková J, Siváková B, Baráth P, Mikušová K. Compartmentalization of galactan biosynthesis in mycobacteria. J Biol Chem 2024; 300:105768. [PMID: 38367664 PMCID: PMC10951656 DOI: 10.1016/j.jbc.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
Galactan polymer is a prominent component of the mycobacterial cell wall core. Its biogenesis starts at the cytoplasmic side of the plasma membrane by a build-up of the linker disaccharide [rhamnosyl (Rha) - N-acetyl-glucosaminyl (GlcNAc) phosphate] on the decaprenyl-phosphate carrier. This decaprenyl-P-P-GlcNAc-Rha intermediate is extended by two bifunctional galactosyl transferases, GlfT1 and GlfT2, and then it is translocated to the periplasmic space by an ABC transporter Wzm-Wzt. The cell wall core synthesis is finalized by the action of an array of arabinosyl transferases, mycolyl transferases, and ligases that catalyze an attachment of the arabinogalactan polymer to peptidoglycan through the linker region. Based on visualization of the GlfT2 enzyme fused with fluorescent tags it was proposed that galactan polymerization takes place in a specific compartment of the mycobacterial cell envelope, the intracellular membrane domain, representing pure plasma membrane free of cell wall components (previously denoted as the "PMf" domain), which localizes to the polar region of mycobacteria. In this work, we examined the activity of the galactan-producing cellular machine in the cell-wall containing cell envelope fraction and in the cell wall-free plasma membrane fraction prepared from Mycobacterium smegmatis by the enzyme assays using radioactively labeled substrate UDP-[14C]-galactose as a tracer. We found that despite a high abundance of GlfT2 in both of these fractions as confirmed by their thorough proteomic analyses, galactan is produced only in the reaction mixtures containing the cell wall components. Our findings open the discussion about the distribution of GlfT2 and the regulation of its activity in mycobacteria.
Collapse
Affiliation(s)
- Karin Savková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Fabianová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Bellová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Bencúrová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Barbara Siváková
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
2
|
Cabarca S, Frazão de Souza M, Albert de Oliveira A, Vignoli Muniz GS, Lamy MT, Vinicius Dos Reis C, Takarada J, Effer B, Souza LS, Iriarte de la Torre L, Couñago R, Pinto Oliveira CL, Balan A. Structure of the Mycobacterium tuberculosis cPknF and conformational changes induced in forkhead-associated regulatory domains. Curr Res Struct Biol 2021; 3:165-178. [PMID: 34382010 PMCID: PMC8339232 DOI: 10.1016/j.crstbi.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter. In this work, we resolved the three-dimensional structure of the PknF catalytic domain (cPknF) in complex with the human kinase inhibitor IKK16. cPknF is conserved when compared to other STPKs but shows specific residues in the binding site where the inhibitor is positioned. In addition, using Small Angle X-Ray Scattering analysis we monitored the behavior of the wild type and three FHA-phosphomimetic mutants in solution, and measured the cPknF affinity for these domains. The kinase showed higher affinity for the non-phosphorylated wild type domain and preference for phosphorylation of T152 inducing the rapprochement of the domains and significant structural changes. The results shed some light on the process of regulating the transporter's activity by phosphorylation and arises important questions about evolution and importance of this mechanism for the bacillus. Rv1747 is an ABC transporter which activity is regulated by PknF. cPknF is a typical Serine/Threonine Protein Kinase that can be explored as drug target. The higher affinity of cPknF for FHA-2 is important for further conformational changes. Rv1747 activation model reveals a concatenated activity essential for the system.
Collapse
Affiliation(s)
- Sindy Cabarca
- Programa de Pós-graduação em Genética, Universidade Estadual de Campinas, Campinas, 13083-862, SP, Brazil.,Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.,Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, 700001, Sucre, Colombia
| | - Maximilia Frazão de Souza
- Grupo de Fluidos Complexos, Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Andrew Albert de Oliveira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Gabriel S Vignoli Muniz
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - M Teresa Lamy
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Caio Vinicius Dos Reis
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Jessica Takarada
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Brian Effer
- Center of Excellence in Traslational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de la Frontera, Temuco, 01145, Chile
| | - Lucas Santos Souza
- Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Lilia Iriarte de la Torre
- Programa de Pós-graduação em Genética, Universidade Estadual de Campinas, Campinas, 13083-862, SP, Brazil.,Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.,Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, 700001, Sucre, Colombia
| | - Rafael Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Cristiano Luis Pinto Oliveira
- Grupo de Fluidos Complexos, Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Andrea Balan
- Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
3
|
The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. BIOLOGY 2020; 9:biology9120443. [PMID: 33291531 PMCID: PMC7761784 DOI: 10.3390/biology9120443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Mycobacterium tuberculosis is a bacterium of great medical importance because it causes tuberculosis, a disease that affects millions of people worldwide. Two important features are related to this bacterium: its ability to infect and survive inside the host, minimizing the immune response, and the burden of clinical isolates that are highly resistant to antibiotics treatment. These two phenomena are directly affected by cell envelope proteins, such as proteins from the ATP-Binding Cassette (ABC transporters) superfamily. In this review, we have compiled information on all the M. tuberculosis ABC transporters described so far, both from a functional and structural point of view, and show their relevance for the bacillus and the potential targets for studies aiming to control the microorganism and structural features. Abstract Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.
Collapse
|
4
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
5
|
Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.01334-17. [PMID: 28893793 DOI: 10.1128/aac.01334-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.
Collapse
|
6
|
Smith LJ, Bochkareva A, Rolfe MD, Hunt DM, Kahramanoglou C, Braun Y, Rodgers A, Blockley A, Coade S, Lougheed KEA, Hafneh NA, Glenn SM, Crack JC, Le Brun NE, Saldanha JW, Makarov V, Nobeli I, Arnvig K, Mukamolova GV, Buxton RS, Green J. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence. Nucleic Acids Res 2017; 45:6600-6612. [PMID: 28482027 PMCID: PMC5499769 DOI: 10.1093/nar/gkx406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/28/2017] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis.
Collapse
Affiliation(s)
- Laura J Smith
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.,School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | - Matthew D Rolfe
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Debbie M Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Christina Kahramanoglou
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Yvonne Braun
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Angela Rodgers
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Alix Blockley
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Stephen Coade
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Kathryn E A Lougheed
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nor Azian Hafneh
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Sarah M Glenn
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - José W Saldanha
- Division of Mathematical Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Vadim Makarov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kristine Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Galina V Mukamolova
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Roger S Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Glass LN, Swapna G, Chavadi SS, Tufariello JM, Mi K, Drumm JE, Lam TT, Zhu G, Zhan C, Vilchéze C, Arcos J, Chen Y, Bi L, Mehta S, Porcelli SA, Almo SC, Yeh SR, Jacobs WR, Torrelles JB, Chan J. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathog 2017; 13:e1006515. [PMID: 28753640 PMCID: PMC5549992 DOI: 10.1371/journal.ppat.1006515] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/09/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv1747 might function as a transporter of PIMs. Because these glycolipids are major mycobacterial cell envelope components that can impact on the immune response, our findings raise the possibility that Rv2623 may regulate bacterial growth, virulence, and entry into persistence, at least in part, by modulating the levels of bacillary PIM expression, perhaps through negatively regulating the Rv1747-dependent export of the immunomodulatory PIMs to alter host-pathogen interaction, thereby influencing the fate of M. tuberculosis in vivo.
Collapse
Affiliation(s)
- Lisa N. Glass
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Ganduri Swapna
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Sivagami Sundaram Chavadi
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - JoAnn M. Tufariello
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Kaixia Mi
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Joshua E. Drumm
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - TuKiet T. Lam
- MS & Proteomics Resource of the W.M. Keck Biotechnology Resource Laboratory, Yale University School Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Guofeng Zhu
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Chenyang Zhan
- Department of Biochemistry, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Catherine Vilchéze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Yong Chen
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Lijun Bi
- Department of Medicine, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Simren Mehta
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Steven A. Porcelli
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Steve C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Syun-Ru Yeh
- Departments of Physiology & Biophysics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - John Chan
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|