1
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
2
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
3
|
Cui F, Fan R, Wang D, Li J, Li T. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Crit Rev Food Sci Nutr 2023; 64:8892-8910. [PMID: 37099732 DOI: 10.1080/10408398.2023.2204491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Rongsen Fan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| |
Collapse
|
4
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
5
|
Benzyl Alcohol/Salicylaldehyde-Type Polyketide Metabolites of Fungi: Sources, Biosynthesis, Biological Activities, and Synthesis. Mar Drugs 2022; 21:md21010019. [PMID: 36662192 PMCID: PMC9860963 DOI: 10.3390/md21010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Marine microorganisms are an important source of natural polyketides, which have become a significant reservoir of lead structures for drug design due to their diverse biological activities. In this review, we provide a summary of the resources, structures, biological activities, and proposed biosynthetic pathways of the benzyl alcohol/salicylaldehyde-type polyketides. In addition, the total syntheses of these secondary metabolites from their discoveries to the present day are presented. This review could be helpful for researchers in the total synthesis of complex natural products and the use of polyketide bioactive molecules for pharmacological purposes and applications in medicinal chemistry.
Collapse
|
6
|
Mamada SS, Nainu F, Masyita A, Frediansyah A, Utami RN, Salampe M, Emran TB, Lima CMG, Chopra H, Simal-Gandara J. Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis. Mar Drugs 2022; 20:691. [PMID: 36355013 PMCID: PMC9697125 DOI: 10.3390/md20110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/01/2023] Open
Abstract
Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.
Collapse
Affiliation(s)
- Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ayu Masyita
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Tangerang Selatan 15318, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Rifka Nurul Utami
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | | | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
7
|
Kačar D, Schleissner C, Cañedo LM, Rodríguez P, de la Calle F, Cuevas C, Galán B, García JL. In vivo production of pederin by labrenzin pathway expansion. Metab Eng Commun 2022; 14:e00198. [PMID: 35517715 PMCID: PMC9062313 DOI: 10.1016/j.mec.2022.e00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Pederin is a potent polyketide toxin that causes severe skin lesions in humans after contact with insects of genus Paederus. Due to its potent anticancer activities, pederin family compounds have raised the interest of pharmaceutical industry. Despite the extensive studies on the cluster of biosynthetic genes responsible for the production of pederin, it has not yet been possible to isolate and cultivate its bacterial endosymbiont producer. However, the marine bacterium Labrenzia sp. PHM005 was recently reported to produce labrenzin, the closest pederin analog. By cloning a synthetic pedO gene encoding one of the three O-methyltraferase of the pederin cluster into Labrenzia sp. PHM005 we have been able to produce pederin for the first time by fermentation in the new recombinant strain.
Collapse
Affiliation(s)
- Dina Kačar
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | - Pilar Rodríguez
- Research and Development Department, PharmaMar S.A, Madrid, Spain
| | | | - Carmen Cuevas
- Research and Development Department, PharmaMar S.A, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Luis García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
8
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
9
|
Wu Z, Li Y, Zhang L, Ding Z, Shi G. Microbial production of small peptide: pathway engineering and synthetic biology. Microb Biotechnol 2021; 14:2257-2278. [PMID: 33459516 PMCID: PMC8601181 DOI: 10.1111/1751-7915.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/14/2023] Open
Abstract
Small peptides are a group of natural products with low molecular weights and complex structures. The diverse structures of small peptides endow them with broad bioactivities and suggest their potential therapeutic use in the medical field. The remaining challenge is methods to address the main limitations, namely (i) the low amount of available small peptides from natural sources, and (ii) complex processes required for traditional chemical synthesis. Therefore, harnessing microbial cells as workhorse appears to be a promising approach to synthesize these bioactive peptides. As an emerging engineering technology, synthetic biology aims to create standard, well-characterized and controllable synthetic systems for the biosynthesis of natural products. In this review, we describe the recent developments in the microbial production of small peptides. More importantly, synthetic biology approaches are considered for the production of small peptides, with an emphasis on chassis cells, the evolution of biosynthetic pathways, strain improvements and fermentation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Youran Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Liang Zhang
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Zhongyang Ding
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| | - Guiyang Shi
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan UniversityWuxiJiangsu Province214122China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu AvenueWuxiJiangsu Province214122China
| |
Collapse
|
10
|
|
11
|
Valadares VS, Martins LC, Roman EA, Valente AP, Cino EA, Moraes AH. Conformational dynamics of Tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity. Biochim Biophys Acta Gen Subj 2021; 1865:129949. [PMID: 34139289 DOI: 10.1016/j.bbagen.2021.129949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The N-terminal domain of Tetracenomycin aromatase/cyclase (TcmN), an enzyme derived from Streptomyces glaucescens, is involved in polyketide cyclization, aromatization, and folding. Polyketides are a diverse class of secondary metabolites produced by certain groups of bacteria, fungi, and plants with various pharmaceutical applications. Examples include antibiotics, such as tetracycline, and anticancer drugs, such as doxorubicin. Because TcmN is a promising enzyme for in vitro production of polyketides, it is important to identify conditions that enhance its thermal resistance and optimize its function. METHODS TcmN unfolding, stability, and dynamics were evaluated by fluorescence spectroscopy, circular dichroism, nuclear magnetic resonance 15N relaxation experiments, and microsecond molecular dynamics (MD) simulations. RESULTS TcmN thermal resistance was enhanced at low protein and high salt concentrations, was pH-dependent, and denaturation was irreversible. Conformational dynamics on the μs-ms timescale were detected for residues in the substrate-binding cavity, and two predominant conformers representing opened and closed cavity states were observed in the MD simulations. CONCLUSION Based on the results, a mechanism was proposed in which the thermodynamics and kinetics of the TcmN conformational equilibrium modulate enzyme function by favoring ligand binding and avoiding aggregation. GENERAL SIGNIFICANCE Understanding the principles underlying TcmN stability and dynamics may help in designing mutants with optimal properties for biotechnological applications.
Collapse
Affiliation(s)
- Veronica S Valadares
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luan C Martins
- Graduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ernesto A Roman
- Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Valente
- National Center of Nuclear Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elio A Cino
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
12
|
Breitling R, Avbelj M, Bilyk O, Carratore F, Filisetti A, Hanko EKR, Iorio M, Redondo RP, Reyes F, Rudden M, Severi E, Slemc L, Schmidt K, Whittall DR, Donadio S, García AR, Genilloud O, Kosec G, De Lucrezia D, Petković H, Thomas G, Takano E. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368:6289918. [PMID: 34057181 PMCID: PMC8195692 DOI: 10.1093/femsle/fnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Oksana Bilyk
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Erik K R Hanko
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Lucija Slemc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Kamila Schmidt
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Dominic R Whittall
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Davide De Lucrezia
- Explora Biotech Srl, Doulix business unit, Via Torino 107, 30133 Venice, Italy
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gavin Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Eriko Takano
- Corresponding author: Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| |
Collapse
|
13
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
14
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
15
|
Ballaschk F, Özkaya Y, Kirsch SF. Stereocontrolled Synthesis of Harzialactone A and Its Three Stereoisomers by Use of Standardized Polyketide Building Blocks. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frederic Ballaschk
- Organic Chemistry Bergische Universität Wuppertal Gaußstraße 20 42119 Wuppertal Germany
| | - Yasemin Özkaya
- Organic Chemistry Bergische Universität Wuppertal Gaußstraße 20 42119 Wuppertal Germany
| | - Stefan F. Kirsch
- Organic Chemistry Bergische Universität Wuppertal Gaußstraße 20 42119 Wuppertal Germany
| |
Collapse
|
16
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Genome Mining as New Challenge in Natural Products Discovery. Mar Drugs 2020; 18:md18040199. [PMID: 32283638 PMCID: PMC7230286 DOI: 10.3390/md18040199] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.
Collapse
|
18
|
Regulatory Patterns of Crp on Monensin Biosynthesis in Streptomyces cinnamonensis. Microorganisms 2020; 8:microorganisms8020271. [PMID: 32079344 PMCID: PMC7074812 DOI: 10.3390/microorganisms8020271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/03/2023] Open
Abstract
Monensin, produced by Streptomyces cinnamonensis, is a polyether ionophore antibiotic widely used as a coccidiostat and a growth-promoting agent in agricultural industry. In this study, cyclic AMP receptor protein (Crp), the global transcription factor for regulation of monensin biosynthesis, was deciphered. The overexpression and antisense RNA silencing of crp revealed that Crp plays a positive role in monensin biosynthesis. RNA sequencing analysis indicated that Crp exhibited extensive regulatory effects on genes involved in both primary metabolic pathways and the monensin biosynthetic gene cluster (mon). The primary metabolic genes, including acs, pckA, accB, acdH, atoB, mutB, epi and ccr, which are pivotal in the biosynthesis of monensin precursors malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA, are transcriptionally upregulated by Crp. Furthermore, Crp upregulates the expression of most mon genes, including all PKS genes (monAI to monAVIII), tailoring genes (monBI-monBII-monCI, monD and monAX) and a pathway-specific regulatory gene (monRI). Enhanced precursor supply and the upregulated expression of mon cluser by Crp would allow the higher production of monensin in S. cinnamonensis. This study gives a more comprehensive understanding of the global regulator Crp and extends the knowledge of Crp regulatory mechanism in Streptomyces.
Collapse
|
19
|
Drulyte I, Obajdin J, Trinh CH, Kalverda AP, van der Kamp MW, Hemsworth GR, Berry A. Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase. IUCRJ 2019; 6:1120-1133. [PMID: 31709067 PMCID: PMC6830212 DOI: 10.1107/s2052252519012399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 05/08/2023]
Abstract
Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of 'tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels-Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99-107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels-Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels-Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.
Collapse
Affiliation(s)
- Ieva Drulyte
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Jana Obajdin
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Arnout P. Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, England
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Alan Berry
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, England
| |
Collapse
|
20
|
Dhakal D, Sohng JK, Pandey RP. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact 2019; 18:137. [PMID: 31409353 PMCID: PMC6693128 DOI: 10.1186/s12934-019-1184-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| |
Collapse
|
21
|
Cummings M, Peters AD, Whitehead GFS, Menon BRK, Micklefield J, Webb SJ, Takano E. Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli. PLoS Biol 2019; 17:e3000347. [PMID: 31318855 PMCID: PMC6638757 DOI: 10.1371/journal.pbio.3000347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.
Collapse
Affiliation(s)
- Matthew Cummings
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Anna D. Peters
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - George F. S. Whitehead
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Binuraj R. K. Menon
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
- Warwick Integrative Synthetic Biology Centre, WISB, School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Jason Micklefield
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Simon J. Webb
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
|
23
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
24
|
Output ordering and prioritisation system (OOPS): ranking biosynthetic gene clusters to enhance bioactive metabolite discovery. J Ind Microbiol Biotechnol 2017; 45:615-619. [PMID: 29255991 DOI: 10.1007/s10295-017-1993-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Abstract
The rapid increase of publicly available microbial genome sequences has highlighted the presence of hundreds of thousands of biosynthetic gene clusters (BGCs) encoding valuable secondary metabolites. The experimental characterization of new BGCs is extremely laborious and struggles to keep pace with the in silico identification of potential BGCs. Therefore, the prioritisation of promising candidates among computationally predicted BGCs represents a pressing need. Here, we propose an output ordering and prioritisation system (OOPS) which helps sorting identified BGCs by a wide variety of custom-weighted biological and biochemical criteria in a flexible and user-friendly interface. OOPS facilitates a judicious prioritisation of BGCs using G+C content, coding sequence length, gene number, cluster self-similarity and codon bias parameters, as well as enabling the user to rank BGCs based upon BGC type, novelty, and taxonomic distribution. Effective prioritisation of BGCs will help to reduce experimental attrition rates and improve the breadth of bioactive metabolites characterized.
Collapse
|
25
|
Qi B, Liu X, Mo T, Li SS, Wang J, Shi XP, Wang XH, Zhu ZX, Zhao YF, Jin HW, Tu PF, Shi SP. Nitric oxide inhibitory polyketides from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2017; 123:35-43. [PMID: 28958955 DOI: 10.1016/j.fitote.2017.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022]
Abstract
Twelve new polyketides, penicichrysogenins A-L (1-10, 11a, and 11b) along with five known compounds (12a, 12b, and 13-15) were isolated from the solid substrate fermentation cultures of a Huperzia serrata endophytic fungus Penicillium chrysogenum MT-12. The structures of the new compounds were established using extensive spectroscopic (1D and 2D NMR, IR, and HRESIMS) and calculated electronic circular dichroism (ECD) methods. Compounds 11a/11b and 12a/12b were two pairs of enantiomers successfully separated by chiral HPLC resolution. Compounds 4, 5, 8, 9, 11a/11b, and 12a/12b exhibited inhibition of nitric oxide production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 17.5-98.4μM.
Collapse
Affiliation(s)
- Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shan-Shan Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao-Ping Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiao-Hui Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yun-Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Hong-Wei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
26
|
Mathews II, Allison K, Robbins T, Lyubimov AY, Uervirojnangkoorn M, Brunger AT, Khosla C, DeMirci H, McPhillips SE, Hollenbeck M, Soltis M, Cohen AE. The Conformational Flexibility of the Acyltransferase from the Disorazole Polyketide Synthase Is Revealed by an X-ray Free-Electron Laser Using a Room-Temperature Sample Delivery Method for Serial Crystallography. Biochemistry 2017; 56:4751-4756. [PMID: 28832129 PMCID: PMC5721673 DOI: 10.1021/acs.biochem.7b00711] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for the direct delivery of the sample into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes for polyketide synthase reaction dynamics are discussed.
Collapse
Affiliation(s)
- Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Kim Allison
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | | | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | | | | | | | - Hasan DeMirci
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Scott E McPhillips
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michael Hollenbeck
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michael Soltis
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
27
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
28
|
Jia N, Ding MZ, Luo H, Gao F, Yuan YJ. Complete genome sequencing and antibiotics biosynthesis pathways analysis of Streptomyces lydicus 103. Sci Rep 2017; 7:44786. [PMID: 28317865 PMCID: PMC5357945 DOI: 10.1038/srep44786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022] Open
Abstract
More and more new natural products have been found in Streptomyces species, which become the significant resource for antibiotics production. Among them, Streptomyces lydicus has been known as its ability of streptolydigin biosynthesis. Herein, we present the genome analysis of S. lydicus based on the complete genome sequencing. The circular chromosome of S. lydicus 103 comprises 8,201,357 base pairs with average GC content 72.22%. With the aid of KEGG analysis, we found that S. lydicus 103 can transfer propanoate to succinate, glutamine or glutamate to 2-oxoglutarate, CO2 and L-glutamate to ammonia, which are conducive to the the supply of amino acids. S. lydicus 103 encodes acyl-CoA thioesterase II that takes part in biosynthesis of unsaturated fatty acids, and harbors the complete biosynthesis pathways of lysine, valine, leucine, phenylalanine, tyrosine and isoleucine. Furthermore, a total of 27 putative gene clusters have been predicted to be involved in secondary metabolism, including biosynthesis of streptolydigin, erythromycin, mannopeptimycin, ectoine and desferrioxamine B. Comparative genome analysis of S. lydicus 103 will help us deeply understand its metabolic pathways, which is essential for enhancing the antibiotic production through metabolic engineering.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hao Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Department of Physics, Tianjin University, Tianjin, 300072, P. R. China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,Department of Physics, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
29
|
Nanda S, Mohanty JN, Mishra R, Joshi RK. Metabolic Engineering of Phenylpropanoids in Plants. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Kim S, Cheong S, Chou A, Gonzalez R. Engineered fatty acid catabolism for fuel and chemical production. Curr Opin Biotechnol 2016; 42:206-215. [DOI: 10.1016/j.copbio.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/07/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
|
31
|
Abstract
The diversity and natural modularity of their biosynthetic pathways has turned natural products into attractive, but challenging, targets for synthetic biology approaches. Here, we discuss the current state of the field, highlighting recent advances and remaining bottlenecks. Global genomic assessments of natural product biosynthetic capacities across large parts of microbial diversity provide a first survey of the available natural parts libraries and identify evolutionary design rules for further engineering. Methods for compound and pathway detection and characterization are developed increasingly on the basis of synthetic biology tools, contributing to an accelerated translation of genomic information into usable building blocks for pathway assembly. A wide range of methods is also becoming available for accessing ever larger parts of chemical space by rational diversification of natural products, guided by rapid progress in our understanding of the underlying biochemistry and enzymatic mechanisms. Enhanced genome assembly and editing tools, adapted to the needs of natural products research, facilitate the realization of ambitious engineering strategies, ranging from combinatorial library generation to high-throughput optimization of product titers. Together, these tools and concepts contribute to the emergence of a new generation of revitalized natural product research.
Collapse
Affiliation(s)
- Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| |
Collapse
|
32
|
Wilkening I, Gazzola S, Riva E, Parascandolo JS, Song L, Tosin M. Second-generation probes for biosynthetic intermediate capture: towards a comprehensive profiling of polyketide assembly. Chem Commun (Camb) 2016; 52:10392-5. [PMID: 27481638 PMCID: PMC5050551 DOI: 10.1039/c6cc04681a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
Malonyl carba(dethia) N-decanoyl cysteamine methyl esters and novel acetoxymethyl esters were utilised as second-generation probes for polyketide intermediate capture. The use of these tools in vivo led to the characterisation of an almost complete set of biosynthetic intermediates from a modular assembly line, providing a first kinetic overview of intermediate processing leading to complex natural product formation.
Collapse
Affiliation(s)
- Ina Wilkening
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Silvia Gazzola
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK. and Dipartimento di Scienza ed Alta Tecnologia, Universita' dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Elena Riva
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | | | - Lijiang Song
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Library Road, CV4 7AL, UK.
| |
Collapse
|
33
|
Roehner N, Beal J, Clancy K, Bartley B, Misirli G, Grünberg R, Oberortner E, Pocock M, Bissell M, Madsen C, Nguyen T, Zhang M, Zhang Z, Zundel Z, Densmore D, Gennari JH, Wipat A, Sauro HM, Myers CJ. Sharing Structure and Function in Biological Design with SBOL 2.0. ACS Synth Biol 2016; 5:498-506. [PMID: 27111421 DOI: 10.1021/acssynbio.5b00215] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate.
Collapse
Affiliation(s)
- Nicholas Roehner
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jacob Beal
- Raytheon BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - Kevin Clancy
- Thermo Fisher Scientific, Carlsbad, California 92008, United States
| | - Bryan Bartley
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Goksel Misirli
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Raik Grünberg
- Institute
for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Ernst Oberortner
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, United States
| | - Matthew Pocock
- Turing Ate My Hamster, Ltd., Newcastle
upon Tyne NE27 0RT, U.K
| | | | - Curtis Madsen
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Tramy Nguyen
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Michael Zhang
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Zhen Zhang
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Zach Zundel
- Department
of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Douglas Densmore
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - John H. Gennari
- Department
of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington 98195, United States
| | - Anil Wipat
- School
of Computing Science, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K
| | - Herbert M. Sauro
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Chris J. Myers
- Department
of Electrical and Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
34
|
Parascandolo JS, Havemann J, Potter HK, Huang F, Riva E, Connolly J, Wilkening I, Song L, Leadlay PF, Tosin M. Insights into 6-Methylsalicylic Acid Bio-assembly by Using Chemical Probes. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 128:3524-3528. [PMID: 27478274 PMCID: PMC4950124 DOI: 10.1002/ange.201509038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/19/2015] [Indexed: 01/19/2023]
Abstract
Chemical probes capable of reacting with KS (ketosynthase)-bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6-methylsalicylic acid synthase (6-MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6-MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6-MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities.
Collapse
Affiliation(s)
| | - Judith Havemann
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Helen K. Potter
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Fanglu Huang
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - Elena Riva
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Jack Connolly
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
- School of BiosciencesThe University of BirminghamBirminghamB15 2TTUK
| | - Ina Wilkening
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Lijiang Song
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Peter F. Leadlay
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - Manuela Tosin
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| |
Collapse
|
35
|
Parascandolo JS, Havemann J, Potter HK, Huang F, Riva E, Connolly J, Wilkening I, Song L, Leadlay PF, Tosin M. Insights into 6-Methylsalicylic Acid Bio-assembly by Using Chemical Probes. Angew Chem Int Ed Engl 2016; 55:3463-7. [PMID: 26833898 PMCID: PMC4797705 DOI: 10.1002/anie.201509038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/19/2015] [Indexed: 01/21/2023]
Abstract
Chemical probes capable of reacting with KS (ketosynthase)-bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6-methylsalicylic acid synthase (6-MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6-MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6-MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities.
Collapse
Affiliation(s)
- James S Parascandolo
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Judith Havemann
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Helen K Potter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Fanglu Huang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Elena Riva
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Jack Connolly
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Ina Wilkening
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Lijiang Song
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
36
|
Precision multidimensional assay for high-throughput microRNA drug discovery. Nat Commun 2016; 7:10709. [PMID: 26880188 PMCID: PMC4757758 DOI: 10.1038/ncomms10709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/12/2016] [Indexed: 12/16/2022] Open
Abstract
Development of drug discovery assays that combine high content with throughput is challenging. Information-processing gene networks can address this challenge by integrating multiple potential targets of drug candidates' activities into a small number of informative readouts, reporting simultaneously on specific and non-specific effects. Here we show a family of networks implementing this concept in a cell-based drug discovery assay for miRNA drug targets. The networks comprise multiple modules reporting on specific effects towards an intended miRNA target, together with non-specific effects on gene expression, off-target miRNAs and RNA interference pathway. We validate the assays using known perturbations of on- and off-target miRNAs, and evaluate an ∼700 compound library in an automated screen with a follow-up on specific and non-specific hits. We further customize and validate assays for additional drug targets and non-specific inputs. Our study offers a novel framework for precision drug discovery assays applicable to diverse target families. Progress in drug discovery can be hampered by a limited exploration of chemical space and the difficulty in assessing the full range of drug candidates' effects on living cells. Here the authors describe a cell-based assay to distinguish between off-target and specific effects of candidate compounds targeting micro RNAs.
Collapse
|
37
|
Weissman KJ. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 2016; 33:203-30. [DOI: 10.1039/c5np00109a] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This reviews covers on-going efforts at engineering the gigantic modular polyketide synthases (PKSs), highlighting both notable successes and failures.
Collapse
Affiliation(s)
- Kira J. Weissman
- UMR 7365
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA)
- CNRS-Université de Lorraine
- Biopôle de l'Université de Lorraine
- 54505 Vandœuvre-lès-Nancy Cedex
| |
Collapse
|
38
|
Abstract
Polyketides are a structurally and functionally diverse family of bioactive natural products that have found widespread application as pharmaceuticals, agrochemicals, and veterinary medicines. In bacteria complex polyketides are biosynthesized by giant multifunctional megaenzymes, termed modular polyketide synthases (PKSs), which construct their products in a highly coordinated assembly line-like fashion from a pool of simple precursor substrates. Not only is the multifaceted enzymology of PKSs a fascinating target for study, but it also presents considerable opportunities for the reengineering of these systems affording access to functionally optimized unnatural natural products. Here we provide an introductory primer to modular polyketide synthase structure and function, and highlight recent advances in the characterization and exploitation of these systems.
Collapse
Affiliation(s)
- Marisa Till
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
39
|
Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies. Curr Top Microbiol Immunol 2016; 398:339-363. [PMID: 27738913 DOI: 10.1007/82_2016_498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Natural products continue to be a predominant source for new anti-infective agents. Research at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and the Helmholtz Centre for Infection Research (HZI) is dedicated to the development of new lead structures against infectious diseases and, in particular, new antibiotics against hard-to-treat and multidrug-resistant bacterial pathogens. In this chapter, we introduce some of the concepts currently being employed in the field of antibiotic discovery. In particular, we will exemplarily illustrate three approaches: (1) Current sources for novel compounds are mainly soil-dwelling bacteria. In the course of our antimicrobial discovery program, a biodiverse collection of myxobacterial strains has been established and screened for antibiotic activities. Based on this effort, one successful example is presented in this chapter: Antibacterial cystobactamids were discovered and their molecular target, the DNA gyrase, was identified soon after the analysis of myxobacterial self-resistance making use of the information found in the respective biosynthesis gene cluster. (2) Besides our focus on novel natural products, we also apply strategies to further develop either neglected drugs or widely used antibiotics for which development of resistance in the clinical setting is an issue: Antimycobacterial griselimycins were first described in the 1960s but their development and use in tuberculosis therapy was not further pursued. We show how a griselimycin derivative with improved pharmacokinetic properties and enhanced potency against Mycobacterium tuberculosis revealed and validated a novel target for antibacterial therapy, the DNA sliding clamp. (3) In a third approach, biosynthetic engineering was used to modify and optimize natural products regarding their pharmaceutical properties and their production scale: The atypical tetracycline chelocardin is a natural product scaffold that was modified to yield a more potent derivative exhibiting activity against multidrug-resistant pathogens. This was achieved by genetic engineering of the producer strain and the resulting compound is now subject to further optimization by medicinal chemistry approaches.
Collapse
|
40
|
Abstract
Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell-cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity.
Collapse
Affiliation(s)
| | - Pablo Carbonell
- Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Experimental and Health Sciences (DCEXS), Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
41
|
Affiliation(s)
- Sarah E. O'Connor
- The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
42
|
Ban YH, Park SR, Yoon YJ. The biosynthetic pathway of FK506 and its engineering: from past achievements to future prospects. J Ind Microbiol Biotechnol 2015; 43:389-400. [PMID: 26342319 DOI: 10.1007/s10295-015-1677-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
FK506, a 23-membered macrolide produced by several Streptomyces species, is an immunosuppressant widely used to prevent the rejection of transplanted organs. In addition, FK506 and its analogs possess numerous promising therapeutic potentials including antifungal, neuroprotective, and neuroregenerative activities. Herein, we introduce the biological activities and mechanisms of action of FK506 and discuss recent progress made in understanding its biosynthetic pathway, improving production, and in the mutasynthesis of diverse analogs. Perspectives highlighting further strain improvement and structural diversification aimed at generating more analogs with improved pharmaceutical properties will be emphasized.
Collapse
Affiliation(s)
- Yeon Hee Ban
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea
| | - Sung Ryeol Park
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yeo Joon Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
43
|
Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197-214. [PMID: 26099332 PMCID: PMC4495716 DOI: 10.1007/s00253-015-6745-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/30/2022]
Abstract
The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Collapse
|
44
|
Lamb AL. Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1054-70. [PMID: 25970810 DOI: 10.1016/j.bbapap.2015.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022]
Abstract
The rise of antibiotic resistance is a growing public health crisis. Novel antimicrobials are sought, preferably developing nontraditional chemical scaffolds that do not inhibit standard targets such as cell wall synthesis or the ribosome. Iron scavenging has been proposed as a viable target, because bacterial and fungal pathogens must overcome the nutritional immunity of the host to be virulent. This review highlights the recent work toward exploiting the biosynthetic enzymes of siderophore production for the design of next generation antimicrobials.
Collapse
Affiliation(s)
- Audrey L Lamb
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
45
|
Hertweck C. Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology. Trends Biochem Sci 2015; 40:189-99. [PMID: 25757401 DOI: 10.1016/j.tibs.2015.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Bacterial modular type I polyketide synthases (PKSs) represent giant megasynthases that produce a vast number of complex polyketides, many of which are pharmaceutically relevant. This review highlights recent advances in elucidating the mechanism of bacterial type I PKSs and associated enzymes, and outlines the ramifications of this knowledge for synthetic biology approaches to expand structural diversity. New insights into biosynthetic codes and structures of thiotemplate systems pave the way to rational bioengineering strategies. Through advances in genome mining, DNA recombination technologies, and biochemical analyses, the toolbox of non-canonical polyketide-modifying enzymes has been greatly enlarged. In addition to various chain-branching and chain-fusing enzymes, an increasing set of scaffold modifying biocatalysts is now available for synthetically hard-to-emulate reactions.
Collapse
Affiliation(s)
- Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Chair of Natural Product Chemistry, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
46
|
Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 2015; 35:46-51. [PMID: 25744872 PMCID: PMC4617476 DOI: 10.1016/j.copbio.2015.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/12/2023]
Abstract
Synthetic biology is quickly moving from proof of concept to industrial application. Pharmaceuticals are a promising target for advanced genetic engineering. Genome sequence data indicate vast underexploited biosynthetic capacity. Synthetic biology can create libraries of novel chemicals enriched for bioactivity. Synthetic biology expands the range of available chassis organisms for industry.
Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.
Collapse
|
47
|
Sun H, Liu Z, Zhao H, Ang EL. Recent advances in combinatorial biosynthesis for drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:823-33. [PMID: 25709407 PMCID: PMC4334309 DOI: 10.2147/dddt.s63023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of extraordinary structural diversity and broad biological activities, natural products have played a significant role in drug discovery. These therapeutically important secondary metabolites are assembled and modified by dedicated biosynthetic pathways in their host living organisms. Traditionally, chemists have attempted to synthesize natural product analogs that are important sources of new drugs. However, the extraordinary structural complexity of natural products sometimes makes it challenging for traditional chemical synthesis, which usually involves multiple steps, harsh conditions, toxic organic solvents, and byproduct wastes. In contrast, combinatorial biosynthesis exploits substrate promiscuity and employs engineered enzymes and pathways to produce novel “unnatural” natural products, substantially expanding the structural diversity of natural products with potential pharmaceutical value. Thus, combinatorial biosynthesis provides an environmentally friendly way to produce natural product analogs. Efficient expression of the combinatorial biosynthetic pathway in genetically tractable heterologous hosts can increase the titer of the compound, eventually resulting in less expensive drugs. In this review, we will discuss three major strategies for combinatorial biosynthesis: 1) precursor-directed biosynthesis; 2) enzyme-level modification, which includes swapping of the entire domains, modules and subunits, site-specific mutagenesis, and directed evolution; 3) pathway-level recombination. Recent examples of combinatorial biosynthesis employing these strategies will also be highlighted in this review.
Collapse
Affiliation(s)
- Huihua Sun
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Zihe Liu
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore ; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore
| |
Collapse
|
48
|
Pfleger BF, Gossing M, Nielsen J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng 2015; 29:1-11. [PMID: 25662836 DOI: 10.1016/j.ymben.2015.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/30/2022]
Abstract
Microbial synthesis of oleochemicals has advanced significantly in the last decade. Microbes have been engineered to convert renewable substrates to a wide range of molecules that are ordinarily made from plant oils. This approach is attractive because it can reduce a motivation for converting tropical rainforest into farmland while simultaneously enabling access to molecules that are currently expensive to produce from oil crops. In the last decade, enzymes responsible for producing oleochemicals in nature have been identified, strategies to circumvent native regulation have been developed, and high yielding strains have been designed, built, and successfully demonstrated. This review will describe the metabolic pathways that lead to the diverse molecular features found in natural oleochemicals, highlight successful metabolic engineering strategies, and comment on areas where future work could further advance the field.
Collapse
Affiliation(s)
- Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States.
| | - Michael Gossing
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
49
|
Riva E, Wilkening I, Gazzola S, Li WMA, Smith L, Leadlay PF, Tosin M. Chemical Probes for the Functionalization of Polyketide Intermediates. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Riva E, Wilkening I, Gazzola S, Li WMA, Smith L, Leadlay PF, Tosin M. Chemical probes for the functionalization of polyketide intermediates. Angew Chem Int Ed Engl 2014; 53:11944-9. [PMID: 25212788 PMCID: PMC4501312 DOI: 10.1002/anie.201407448] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/08/2022]
Abstract
A library of functionalized chemical probes capable of reacting with ketosynthase-bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl-ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology.
Collapse
Affiliation(s)
- Elena Riva
- Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL (UK)
| | | | | | | | | | | | | |
Collapse
|