1
|
Giovannini M, Vieri W, Bosi E, Riccardi C, Lo Giudice A, Fani R, Fondi M, Perrin E. Functional Genomics of a Collection of Gammaproteobacteria Isolated from Antarctica. Mar Drugs 2024; 22:238. [PMID: 38921549 PMCID: PMC11205219 DOI: 10.3390/md22060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.
Collapse
Affiliation(s)
- Michele Giovannini
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Walter Vieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Emanuele Bosi
- Department of Earth, Environment and Life Sciences—DISTAV, University of Genoa, Corso Europa 26, I-16132 Genova, Italy;
| | - Christopher Riccardi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
- Quantitative and Computational Biology Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, (CNR.ISP), Spianata San Raineri 86, I-98122 Messina, Italy;
- Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), I-98122 Messina, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina 61, I-90133 Palermo, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Marco Fondi
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| | - Elena Perrin
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy; (M.G.); (W.V.); (C.R.); (R.F.); (M.F.)
| |
Collapse
|
2
|
Thomsen J, Menezes GA, Abdulrazzaq NM, Moubareck CA, Senok A, Everett DB. Evolving trends among Pseudomonas aeruginosa: a 12-year retrospective study from the United Arab Emirates. Front Public Health 2023; 11:1243973. [PMID: 38106909 PMCID: PMC10721971 DOI: 10.3389/fpubh.2023.1243973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Pseudomonas is a group of ubiquitous non-fermenting Gram-negative bacteria (NFGNB). Of the several species associated with humans, Pseudomonas aeruginosa (PA) can acclimate to diverse environments. The global frequency of PA infections is rising and is complicated by this organism's high intrinsic and acquired resistance to several clinically relevant antibiotics. Data on the epidemiology, levels, and trends of antimicrobial resistance of PA in clinical settings in the MENA/GCC region is scarce. Methods A retrospective 12-year analysis of 56,618 non-duplicate diagnostic Pseudomonas spp. from the United Arab Emirates (UAE) was conducted. Data was generated at 317 surveillance sites by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National antimicrobial resistance (AMR) Surveillance program. Data analysis was conducted with WHONET (https://whonet.org/). Results Among the total isolates (N = 56,618), the majority were PA (95.6%). Data on nationality revealed 44.1% were UAE nationals. Most isolates were from soft tissue (55.7%), followed by respiratory tract (26.7%). PA was more commonly found among inpatients than among outpatients, followed by ICUs. PA showed a horizontal trend for resistance to fluoroquinolones, 3rd- and 4th-generation cephalosporins, and decreasing trends of resistance for aminoglycosides and meropenem. The highest percentage of multidrug resistant (MDR) isolates was reported in 2011 at 35.6%. As an overall trend, the percentage of MDR, extensively drug-resistant (XDR), and possible pandrug-resistant (PDR) isolates generally declined over the study period. Carbapenem-resistant PA (CRPA) were associated with a higher mortality (RR: 2.7), increased admission to ICU (RR: 2.3), and increased length of stay (LOS) (12 excess inpatient days per case), as compared to carbapenem-susceptible PA (CSPA). Conclusion The resistance trends in Pseudomonas species in the UAE indicated a decline in AMR and in percentages of Pseudomonas isolates with MDR and XDR profiles. The sustained Pseudomonas spp. circulation particularly in the hospital settings highlights the importance of surveillance techniques, infection control strategies, and stewardship to limit the continued dissemination. This data also shows that CRPA are associated with higher mortality, increased ICU admission rates, and a longer hospitalization, thus higher costs due to increased number of in-hospital and ICU days.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Occupational and Environmental Health and Safety, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Godfred A. Menezes
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Najiba M. Abdulrazzaq
- Al Kuwait Hospital Dubai, Emirates Health Services Establishment, Dubai, United Arab Emirates
| | | | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Romero-González LE, Rojas-Vargas J, Muriel-Millán LF, Bustos-Martínez J, Bustamante VH, Pardo-López L. Genomic and phenotypic characterization of Pseudomonas sp. GOM7, a novel marine bacterial species with antimicrobial activity against multidrug-resistant Staphylococcus aureus. PLoS One 2023; 18:e0288504. [PMID: 37440509 DOI: 10.1371/journal.pone.0288504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Antimicrobial resistance (AMR) represents a serious threat to global health. The development of new drugs to combat infections caused by bacteria resistant to multiple or even all available antibiotics is urgent. Most antibiotics used up to date have been identified from soil microorganisms. The marine environment represents an alternative source with great potential for the identification of microorganisms that produce bioactive molecules, including antibiotics. In this study, we analyzed the antibacterial activity of a collection of 82 bacterial strains isolated from marine water and sediment samples collected from the Southwestern Gulf of Mexico. Eight of the marine isolates inhibited the growth of different pathogenic bacteria, seven of which were identified as presumptive Pseudomonas aeruginosa. Interestingly, genome sequencing and phylogenetic analysis revealed that the remaining marine isolate showing antibacterial activity is a novel Pseudomonas species that we denominated Pseudomonas sp. GOM7, which was not pathogenic in the Galleria mellonella infection model in the conditions tested. Notably, Pseudomonas sp. GOM7 inhibited the growth of multidrug and methicillin-resistant strains of the priority pathogen Staphylococcus aureus. Our results show that the anti-S. aureus compound(s) produced by Pseudomonas sp. GOM7 can be extracted from the culture supernatant of this bacterium with the organic solvent ethyl acetate. Annotation of the Pseudomonas sp. GOM7 genome revealed the presence of several biosynthetic gene clusters predicted to code for possible antimicrobial compounds. Our results further highlight the potential of bacteria from the Gulf of Mexico as a source of novel antimicrobials.
Collapse
Affiliation(s)
- Luis E Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jorge Rojas-Vargas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis F Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jaime Bustos-Martínez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Unidad Xochimilco, CDMX, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Abstract
OBJECTIVE This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.
Collapse
|
5
|
Behzadi P, Ambrosi C, Scribano D, Zanetti S, Sarshar M, Gajdács M, Donadu MG. Editorial: Current perspectives on Pseudomonas aeruginosa: epidemiology, virulence and contemporary strategies to combat multidrug-resistant (MDR) pathogens. Front Microbiol 2022; 13:975616. [PMID: 35958138 PMCID: PMC9363151 DOI: 10.3389/fmicb.2022.975616] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
- *Correspondence: Márió Gajdács
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, Sassari, Italy
| |
Collapse
|
6
|
Espinosa-Camacho LF, Delgado G, Cravioto A, Morales-Espinosa R. Diversity in the composition of the accessory genome of Mexican Pseudomonas aeruginosa strains. Genes Genomics 2021; 44:53-77. [PMID: 34410625 DOI: 10.1007/s13258-021-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.
Collapse
Affiliation(s)
- Luis F Espinosa-Camacho
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Alejandro Cravioto
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Colonia Ciudad Universitaria, Coyoacán, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Vesga P, Augustiny E, Keel C, Maurhofer M, Vacheron J. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Environ Microbiol 2021; 23:5378-5394. [PMID: 34190383 PMCID: PMC8519069 DOI: 10.1111/1462-2920.15623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two‐partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.
Collapse
Affiliation(s)
- Pilar Vesga
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Eva Augustiny
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Monika Maurhofer
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Nain Z, Mansur FJ, Syed SB, Islam MA, Azakami H, Islam MR, Karim MM. Inhibition of biofilm formation, quorum sensing and other virulence factors in Pseudomonas aeruginosa by polyphenols of Gynura procumbens leaves. J Biomol Struct Dyn 2021; 40:5357-5371. [PMID: 33403919 DOI: 10.1080/07391102.2020.1870563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quorum sensing (QS) enables virulence factors in bacteria for biofilm formation and pathogenic invasion. Therefore, quorum quenching (QQ), disruption of QS circuit, becomes an alternative antimicrobial therapy. In this study, leaf extract of Gynura procumbens (GP) was used to inhibit biofilm and virulent factors in Pseudomonas aeruginosa. The extract inhibited the biofilm production (p ≤ 0.05) in P. aeruginosa strains MZ2F and MZ4A. The minimum biofilm eradication concentration (MBEC) was recorded at 250 and 500 μg/ml while total activity was found at 288 and 144 ml/g, respectively. Moreover, a significant reduction of virulence factors (p ≤ 0.05) at sub-MBEC without affecting the growth implies the QQ action of the extract. The bioactive fractions were rich in polyphenols and tentatively identified as quercetin and myricetin (Rf=0.53-0.60). Furthermore, we employed computational methods to validate our findings and their interactions with QS receptors (LasR and RhlR). Interestingly, docking studies have also shown that quercetin and myricetin are the promising anti-QS agents out of 31 GP compounds. Notably, their binding affinity ranged between -9.77 and -10.52 kcal/mol for both QS receptors, with controls ranging from -5.40 to -8.97 kcal/mol. Besides, ΔG of quercetin and myricetin with LasR was -71.56 and -74.88 kcal/mol, respectively. Moreover, compounds were suitable drug candidates with stable binding interactions. Therefore, the anti-QS activity of GP leaves and the identified polyphenols can be used in developing QQ-based therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Fariha Jasin Mansur
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Ariful Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Hiroyuki Azakami
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Md Rezuanul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
9
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
10
|
Nain Z, Sayed SB, Karim MM, Islam MA, Adhikari UK. Energy-optimized pharmacophore coupled virtual screening in the discovery of quorum sensing inhibitors of LasR protein of Pseudomonas aeruginosa. J Biomol Struct Dyn 2019; 38:5374-5388. [DOI: 10.1080/07391102.2019.1700168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Ariful Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
11
|
The Essential Role of Hypermutation in Rapid Adaptation to Antibiotic Stress. Antimicrob Agents Chemother 2019; 63:AAC.00744-19. [PMID: 31036684 DOI: 10.1128/aac.00744-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022] Open
Abstract
A common outcome of antibiotic exposure in patients and in vitro is the evolution of a hypermutator phenotype that enables rapid adaptation by pathogens. While hypermutation is a robust mechanism for rapid adaptation, it requires trade-offs between the adaptive mutations and the more common "hitchhiker" mutations that accumulate from the increased mutation rate. Using quantitative experimental evolution, we examined the role of hypermutation in driving the adaptation of Pseudomonas aeruginosa to colistin. Metagenomic deep sequencing revealed 2,657 mutations at ≥5% frequency in 1,197 genes and 761 mutations in 29 endpoint isolates. By combining genomic information, phylogenetic analyses, and statistical tests, we showed that evolutionary trajectories leading to resistance could be reliably discerned. In addition to known alleles such as pmrB, hypermutation allowed identification of additional adaptive alleles with epistatic relationships. Although hypermutation provided a short-term fitness benefit, it was detrimental to overall fitness. Alarmingly, a small fraction of the colistin-adapted population remained colistin susceptible and escaped hypermutation. In a clinical population, such cells could play a role in reestablishing infection upon withdrawal of colistin. We present here a framework for evaluating the complex evolutionary trajectories of hypermutators that applies to both current and emerging pathogen populations.
Collapse
|
12
|
D'Amico K, Filiatrault MJ. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000. FEMS Microbiol Lett 2018; 364:fnx004. [PMID: 28073812 DOI: 10.1093/femsle/fnx004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. To better manage disease in the field, it is important to have an understanding of the underlying genetic mechanisms that mediate virulence. There are a substantial number of genes in sequenced bacterial genomes, including P. syringae, that encode for conserved hypothetical proteins; some of these have been functionally characterized in other Pseudomonads and have been demonstrated to play important roles in disease. PSPTO_3957 encodes a conserved hypothetical protein of unknown function. To evaluate the role of PSPTO_3957 in P. syringae pv. tomato DC3000, a PSPTO_3957 deletion mutant was constructed. Here, we show that PSPTO_3957 does not influence growth on rich media, motility or biofilm formation but is necessary for nitrate assimilation and full virulence in P. syringae. Our results have revealed an important role for PSPTO_3957 in the biology of P. syringae. Given the conservation of this protein among many bacteria, this protein might serve as an attractive target for disease management of this and other bacterial plant pathogens.
Collapse
Affiliation(s)
- Katherine D'Amico
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Ithaca, NY 14853, USA
| | - Melanie J Filiatrault
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Ferreiro MD, Nogales J, Farias GA, Olmedilla A, Sanjuán J, Gallegos MT. Multiple CsrA Proteins Control Key Virulence Traits in Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:525-536. [PMID: 29261011 DOI: 10.1094/mpmi-09-17-0232-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 has a complex Gac-rsm global regulatory pathway that controls virulence, motility, production of secondary metabolites, carbon metabolism, and quorum sensing. However, despite the fact that components of this pathway are known, their physiological roles have not yet been established. Regarding the CsrA/RsmA type proteins, five paralogs, three of which are well conserved within the Pseudomonas genus (csrA1, csrA2, and csrA3), have been found in the DC3000 genome. To decipher their function, mutants lacking the three most conserved CsrA proteins have been constructed and their physiological outcomes examined. We show that they exert nonredundant functions and demonstrate that CsrA3 and, to a lesser extent, CsrA2 but not CsrA1 alter the expression of genes involved in a variety of pathways and systems important for motility, exopolysaccharide synthesis, growth, and virulence. Particularly, alginate synthesis, syringafactin production, and virulence are considerably de-repressed in a csrA3 mutant, whereas growth in planta is impaired. We propose that the linkage of growth and symptom development is under the control of CsrA3, which functions as a pivotal regulator of the DC3000 life cycle, repressing virulence traits and promoting cell division in response to environmental cues.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Joaquina Nogales
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - Gabriela A Farias
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Adela Olmedilla
- 2 Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Juan Sanjuán
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| | - María Trinidad Gallegos
- 1 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain; and
| |
Collapse
|