1
|
Gornard S, Mougel F, Germon I, Borday-Birraux V, Venon P, Drabo S, Kaiser L. Cellular dynamics of host - parasitoid interactions: Insights from the encapsulation process in a partially resistant host. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104646. [PMID: 38705455 DOI: 10.1016/j.jinsphys.2024.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Cotesia typhae is an eastern African endoparasitoid braconid wasp that targets the larval stage of the lepidopteran stem borer, Sesamia nonagrioides, a maize crop pest in Europe. The French host population is partially resistant to the Makindu strain of the wasp, allowing its development in only 40% of the cases. Resistant larvae can encapsulate the parasitoid and survive the infection. This interaction provides a very interesting frame for investigating the impact of parasitism on host cellular resistance. We characterized the parasitoid ovolarval development in a permissive host and studied the encapsulation process in a resistant host by dissection and histological sectioning compared to that of inert chromatography beads. We measured the total hemocyte count in parasitized and bead-injected larvae over time to monitor the magnitude of the immune reaction. Our results show that parasitism of resistant hosts delayed encapsulation but did not affect immune abilities towards inert beads. Moreover, while bead injection increased total hemocyte count, it remained constant in resistant and permissive larvae. We conclude that while Cotesia spp virulence factors are known to impair the host immune system, our results suggest that passive evasion could also occur.
Collapse
Affiliation(s)
- Samuel Gornard
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Florence Mougel
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France.
| | - Isabelle Germon
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Véronique Borday-Birraux
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Pascaline Venon
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Salimata Drabo
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| | - Laure Kaiser
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Yin C, Li M, Hu J, Lang K, Chen Q, Liu J, Guo D, He K, Dong Y, Luo J, Song Z, Walters JR, Zhang W, Li F, Chen X. The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics 2018; 19:420. [PMID: 29848290 PMCID: PMC5977540 DOI: 10.1186/s12864-018-4783-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parasitoid wasps are well-known natural enemies of major agricultural pests and arthropod borne diseases. The parasitoid wasp Macrocentrus cingulum (Hymenoptera: Braconidae) has been widely used to control the notorious insect pests Ostrinia furnacalis (Asian Corn Borer) and O. nubilalis (European corn borer). One striking phenomenon exhibited by M. cingulum is polyembryony, the formation of multiple genetically identical offspring from a single zygote. Moreover, M. cingulum employs a passive parasitic strategy by preventing the host's immune system from recognizing the embryo as a foreign body. Thus, the embryos evade the host's immune system and are not encapsulated by host hemocytes. Unfortunately, the mechanism of both polyembryony and immune evasion remains largely unknown. RESULTS We report the genome of the parasitoid wasp M. cingulum. Comparative genomics analysis of M. cingulum and other 11 insects were conducted, finding some gene families with apparent expansion or contraction which might be linked to the parasitic behaviors or polyembryony of M. cingulum. Moreover, we present the evidence that the microRNA miR-14b regulates the polyembryonic development of M. cingulum by targeting the c-Myc Promoter-binding Protein 1 (MBP-1), histone-lysine N-methyltransferase 2E (KMT2E) and segmentation protein Runt. In addition, Hemomucin, an O-glycosylated transmembrane protein, protects the endoparasitoid wasp larvae from being encapsulated by host hemocytes. Motif and domain analysis showed that only the hemomucin in two endoparasitoids, M. cingulum and Venturia canescens, possessing the ability of passive immune evasion has intact mucin domain and similar O-glycosylation patterns, indicating that the hemomucin is a key factor modulating the immune evasion. CONCLUSIONS The microRNA miR-14b participates in the regulation of polyembryonic development, and the O-glycosylation of the mucin domain in the hemomucin confers the passive immune evasion in this wasp. These key findings provide new insights into the polyembryony and immune evasion.
Collapse
Affiliation(s)
- Chuanlin Yin
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Jian Hu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Kun Lang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Qiming Chen
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Jinding Liu
- College of Information Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dianhao Guo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Yipei Dong
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Jiapeng Luo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Zhenkun Song
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - James R. Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66046 USA
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| | - Xuexin Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China
| |
Collapse
|
3
|
Luna MG, Desneux N, Schneider MI. Encapsulation and Self-Superparasitism of Pseudapanteles dignus (Muesebeck) (Hymenoptera: Braconidae), a Parasitoid of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). PLoS One 2016; 11:e0163196. [PMID: 27732609 PMCID: PMC5061380 DOI: 10.1371/journal.pone.0163196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022] Open
Abstract
Endoparasitoids can be killed by host encapsulation, a cellular-mediated host immunological response against parasitism that involves hemocytes aggregation. As a counteracting strategy, many parasitoids can evade this host response through self-superparasitism. The objectives of this study were: 1) to describe the parasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) early immature stages (egg and larva) encapsulation by the host Tuta absoluta (Lepidoptera: Gelechiidae), and 2) to determine the occurrence of self-superparasitism and the rate of escaping to encapsulation of this parasitoid. Knowledge of host-parasitoid immunological interaction is crucial when evaluating the potential of an endoparasitoid as a biological control candidate. Parasitoid-exposed T. absoluta larvae were dissected in vivo under light stereoscope microscope at 24-h intervals, for five days after exposition to detect encapsulation. The preimaginal stages of P. dignus and numbers of healthy and encapsulated immature parasitoids per host were recorded. Samples of parasitoid eggs and larvae were processed for SEM visualization of encapsulation. Necropsies evidenced that only the early first larval instar of P. dignus (up to 96 h-old) was partially or completely encapsulated. A non-melanized capsule, formed by layers of granulocyte-type hemocytes enveloping around the parasitoid body, was recorded. Approximately 50% of the parasitized T. absoluta larvae had significantly only one P. dignus egg, meanwhile supernumerary parasitization yielded up to seven immature parasitoids per host. The proportion of single-early first larval instar of P. dignus reached ≈ 0.5 and decreased significantly as the number of parasitoid individuals per host increased. P. dignus encapsulation and its ability to overcome with the host immune defense through self-superparasitism indicate that T. absoluta is a semi-permissive host for this parasitoid.
Collapse
Affiliation(s)
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), Sophia-Antipolis, France
| | | |
Collapse
|
4
|
Davis SE, Malfi RL, Roulston TH. Species differences in bumblebee immune response predict developmental success of a parasitoid fly. Oecologia 2015; 178:1017-32. [PMID: 25795253 DOI: 10.1007/s00442-015-3292-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/07/2015] [Indexed: 11/24/2022]
Abstract
Endoparasitoids develop inside the body of a host organism and, if successful, eventually kill their host in order to reach maturity. Host species can vary in their suitability for a developing endoparasitoid; in particular, the host immune response, which can suppress egg hatching and larval development, has been hypothesized to be one of the most important determinants of parasitoid host range. In this study, we investigated whether three bumblebee host species (Bombus bimaculatus, Bombus griseocollis, and Bombus impatiens) varied in their suitability for the development of a shared parasitoid, the conopid fly (Conopidae, Diptera) and whether the intensity of host encapsulation response, an insect immune defense against invaders, could predict parasitoid success. When surgically implanted with a nylon filament, B. griseocollis exhibited a stronger immune response than both B. impatiens and B. bimaculatus. Similarly, B. griseocollis was more likely to melanize conopid larvae from natural infections and more likely to kill conopids prior to its own death. Our results indicate that variation in the strength of the general immune response of insects may have ecological implications for sympatric species that share parasites. We suggest that, in this system, selection for a stronger immune response may be heightened by the pattern of phenological overlap between local host species and the population peak of their most prominent parasitoid.
Collapse
Affiliation(s)
- Staige E Davis
- Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA, 22904, USA
| | | | | |
Collapse
|