1
|
Kepngop LRK, Wosula EN, Amour M, Ghomsi PGT, Wakam LN, Kansci G, Legg JP. Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon. INSECTS 2024; 15:657. [PMID: 39336625 PMCID: PMC11432237 DOI: 10.3390/insects15090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.
Collapse
Affiliation(s)
- Lanvin R. K. Kepngop
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Pierre G. T. Ghomsi
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Louise N. Wakam
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Germain Kansci
- Laboratory of Food Science and Nutrition, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| |
Collapse
|
2
|
Kumar V, Subramanian J, Marimuthu M, Subbarayalu M, Ramasamy V, Gandhi K, Ariyan M. Diversity and functional characteristics of culturable bacterial endosymbionts from cassava whitefly biotype Asia II-5, Bemisia tabaci. 3 Biotech 2024; 14:100. [PMID: 38456084 PMCID: PMC10914660 DOI: 10.1007/s13205-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Whitefly Bemisia tabaci, a carrier of cassava mosaic disease (CMD), poses a significant threat to cassava crops. Investigating culturable bacteria and their impact on whiteflies is crucial due to their vital role in whitefly fitness and survival. The whitefly biotype associated with cassava and transmitting CMD in India has been identified as Asia II 5 through partial mitochondrial cytochrome oxidase I gene sequencing. In this study, bacteria associated with adult B. tabaci feeding on cassava were extracted using seven different media. Nutrient Agar (NA), Soyabean Casein Digest Medium (SCDM), Luria Bertani agar (LBA), and Reasoner's 2A agar (R2A) media resulted in 19, 6, 4, and 4 isolates, respectively, producing a total of 33 distinct bacterial isolates. Species identification through 16SrRNA gene sequencing revealed that all isolates belonged to the Bacillota and Pseudomonadota phyla, encompassing 11 genera: Bacillus, Cytobacillus, Exiguobacterium, Terribacillus, Brevibacillus, Enterococcus, Staphylococcus, Brucella, Novosphingobium, Lysobacter, and Pseudomonas. All bacterial isolates were tested for chitinase, protease, siderophore activity, and antibiotic sensitivity. Nine isolates exhibited chitinase activity, 28 showed protease activity, and 23 displayed siderophore activity. Most isolates were sensitive to antibiotics such as Vancomycin, Streptomycin, Erythromycin, Kanamycin, Doxycycline, Tetracycline, and Ciprofloxacin, while they demonstrated resistance to Bacitracin and Colistin. Understanding the culturable bacteria associated with cassava whitefly and their functional significance could contribute to developing effective cassava whitefly and CMD control in agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03949-0.
Collapse
Affiliation(s)
- Venkatesh Kumar
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Jeyarani Subramanian
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Murugan Marimuthu
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Mohankumar Subbarayalu
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Venkatachalam Ramasamy
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - Manikandan Ariyan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Tan Y, Gong B, Zhang Q, Li C, Weng J, Zhou X, Jin L. Diversity of endosymbionts in camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), estimated by 16S rRNA analysis and their biological implications. Front Microbiol 2023; 14:1124386. [PMID: 37138629 PMCID: PMC10149810 DOI: 10.3389/fmicb.2023.1124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
Camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), is a major pest in tea, which poses a serious threat to tea production. Similar to many insects, various bacterial symbioses inside A. camelliae may participate in the reproduction, metabolism, and detoxification of the host. However, few reports included research on the microbial composition and influence on A. camelliae growth. We first applied high-throughput sequencing of the V4 region in the 16S rRNA of symbiotic bacteria to study its component and effect on the biological trait of A. camelliae by comparing it with the antibiotic treatment group. The population parameters, survival rate, and fecundity rate of A. camelliae were also analyzed using the age-stage two-sex life table. Our results demonstrated that phylum Proteobacteria (higher than 96.15%) dominated the whole life cycle of A. camelliae. It unveiled the presence of Candidatus Portiera (primary endosymbiont) (67.15-73.33%), Arsenophonus (5.58-22.89%), Wolbachia (4.53-11.58%), Rickettsia (0.75-2.59%), and Pseudomonas (0.99-1.88%) genus. Antibiotic treatment caused a significant decrease in the endosymbiont, which negatively affected the host's biological properties and life process. For example, 1.5% rifampicin treatment caused a longer preadult stage in the offspring generation (55.92 d) compared to the control (49.75d) and a lower survival rate (0.36) than the control (0.60). The decreased intrinsic rate of increase (r), net reproductive rate (R 0), and prolonged mean generation time (T) were signs of all disadvantageous effects associated with symbiotic reduction. Our findings confirmed the composition and richness of symbiotic bacteria in larva and adult of A. camelliae by an Illumina NovaSeq 6000 analysis and their influence on the development of the host by demographic research. Together, the results suggested that symbiotic bacteria play an important role in manipulating the biological development of their hosts, which might help us for developing new pest control agents and technologies for better management of A. camelliae.
Collapse
|
4
|
Plant-mediated rifampicin treatment of Bemisia tabaci disrupts but does not eliminate endosymbionts. Sci Rep 2022; 12:20766. [PMID: 36456664 PMCID: PMC9715664 DOI: 10.1038/s41598-022-24788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Whiteflies are among the most important global insect pests in agriculture; their sustainable control has proven challenging and new methods are needed. Bacterial symbionts of whiteflies are poorly understood potential target of novel whitefly control methods. Whiteflies harbour an obligatory bacterium, Candidatus Portiera aleyrodidarum, and a diverse set of facultative bacterial endosymbionts. Function of facultative microbial community is poorly understood largely due to the difficulty in their selective elimination without removal of the primary endosymbiont. Since the discovery of secondary endosymbionts, antibiotic rifampicin has emerged as the most used tool for their manipulation. Its effectiveness is however much less clear, with contrasting reports on its effects on the endosymbiont community. The present study builds upon most recent method of rifampicin application in whiteflies and evaluates its ability to eliminate obligatory Portiera and two facultative endosymbionts (Rickettsia and Arsenophnus). Our results show that rifampicin reduces but does not eliminate any of the three endosymbionts. Additionally, rifampicin causes direct negative effect on whiteflies, likely by disrupting mitochondria. Taken together, results signify the end of a rifampicin era in whitefly endosymbiont studies. Finally, we propose refinement of current quantification and data analysis methods which yields additional insights in cellular metabolic scaling.
Collapse
|
5
|
Wangkeeree J, Suwanchaisri K, Roddee J, Hanboonsong Y. Selective Elimination of Wolbachia from the Leafhopper Yamatotettix flavovittatus Matsumura. Curr Microbiol 2022; 79:173. [PMID: 35488963 DOI: 10.1007/s00284-022-02822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Wolbachia infections affect the reproductive system and various biological traits of the host insect. There is a high frequency of Wolbachia infection in the leafhopper Yamatotettix flavovittatus Matsumura. To investigate the potential roles of Wolbachia in the host, it is important to generate a non-Wolbachia-infected line. The efficacy of antibiotics in eliminating Wolbachia from Y. flavovittatus remains unknown. This leafhopper harbors the mutualistic bacterium Candidatus Sulcia muelleri, which has an important function in the biological traits. The presence of Ca. S. muelleri raises a major concern regarding the use of antibiotics. We selectively eliminated Wolbachia, considering the influence of antibiotics on leafhopper survival and Ca. S. muelleri prevalence. The effect of artificial diets containing different doses of tetracycline and rifampicin on survival was optimized; high dose (0.5 mg/ml) of antibiotics induces a high mortality. A concentration of 0.2 mg/ml was chosen for the subsequent experiments. Antibiotic treatments significantly reduced the Wolbachia infection, and the Wolbachia density in the treated leafhoppers sharply declined. Wolbachia recurred in tetracycline-treated offspring, regardless of antibiotic exposure. However, Wolbachia is unable to be transmitted and restored in rifampicin-treated offspring. The dose and treatment duration had no significant effect on the infection and density of Ca. S. muelleri in the antibiotic-treated offspring. In conclusion, Wolbachia in Y. flavovittatus was stably eliminated using rifampicin, and the Wolbachia-free line was generated at least two generations after treatment. This report provides additional experimental procedures for removing Wolbachia from insects, particularly in host species with the coexistence of Ca. S. muelleri.
Collapse
Affiliation(s)
- Jureemart Wangkeeree
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand.
| | - Kamonrat Suwanchaisri
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand
| | - Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, Nakhon Ratchasima, Thailand
| | - Yupa Hanboonsong
- Department of Entomology, Faculty of Agriculture, Khon Kaen University, Nai Muang, Muang, Khon Kaen, Thailand
| |
Collapse
|
6
|
Zhu DT, Rao Q, Zou C, Ban FX, Zhao JJ, Liu SS. Genomic and transcriptomic analyses reveal metabolic complementarity between whiteflies and their symbionts. INSECT SCIENCE 2022; 29:539-549. [PMID: 34264019 DOI: 10.1111/1744-7917.12943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nutritional mutualism between insects and symbiotic bacteria is widespread. The various sap-feeding whitefly species within the Bemisia tabaci complex associate with the same obligate symbiont (Portiera) and multiple secondary symbionts. It is often assumed that some of the symbionts residing in the whiteflies play crucial roles in the nutritional physiology of their insect hosts. Although effort has been made to understand the functions of the whitefly symbionts, the metabolic complementarity offered by these symbionts to the hosts is not yet well understood. We examined two secondary symbionts, Arsenophonus and Wolbachia, in two species of the B. tabaci whitefly complex, provisionally named as Asia II 3 and China 1. Genomic sequence analyses revealed that Arsenophonus and Wolbachia retained genes responsible for the biosynthesis of B vitamins. We then conducted transcriptomic surveys of the bacteriomes in these two species of whiteflies together with that in another species named MED of this whitefly complex previously reported. The analyses indicated that several key genes in B vitamin syntheses from the three whitefly species were identical. Our findings suggest that, similar to another secondary symbiont Hamiltonella, Arsenophonus and Wolbachia function in the nutrient provision of host whiteflies. Although phylogenetically distant species of symbionts are associated with their respective hosts, they have evolved and retained similar functions in biosynthesis of some B vitamins. Such metabolic complementarity between whiteflies and symbionts represents an important feature of their coevolution.
Collapse
Affiliation(s)
- Dan-Tong Zhu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou, 311300, China
| | - Chi Zou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Fei-Xue Ban
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Juan-Juan Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
7
|
Sun X, Liu BQ, Li CQ, Chen ZB, Xu XR, Luan JB. A novel microRNA regulates cooperation between symbiont and a laterally acquired gene in the regulation of pantothenate biosynthesis within Bemisia tabaci whiteflies. Mol Ecol 2022; 31:2611-2624. [PMID: 35243711 DOI: 10.1111/mec.16416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Horizontally transferred genes (HTGs) play a key role in animal symbiosis, and some horizontally transferred genes or proteins are highly expressed in specialized host cells (bacteriocytes). However, it is not clear how HTGs are regulated, but miRNAs are prime candidates given their previously demonstrated roles in symbiosis and impacts on the expression of host genes. A horizontally acquired PanBC that is highly expressed in whitefly bacteriocytes can cooperate with an obligate symbiont Portiera for pantothenate production, facilitating whitefly performance and Portiera titer. Here, we found that a whitefly miRNA novel-m0780-5p was up-regulated and its target panBC was down-regulated in Portiera-eliminated whiteflies. This miRNA was located to the cytoplasmic region of whitefly bacteriocytes. A novel-m0780-5p agomir injection reduced the expression of PanBC in whitefly bacteriocytes, while a novel-m0780-5p antagomir injection enhanced PanBC expression. Agomir injection also reduced the pantothenate level, Portiera titer and whitefly performance. Supplementation with pantothenate restored Portiera titer and the fitness of agomir-injected whiteflies. Thus, we demonstrated that a whitefly miRNA regulates panBC-mediated host-symbiont collaboration required for pantothenate synthesis, benefiting the whitefly-Portiera symbiosis. Both panBC and novel-m0780-5p are present in the genomes of six B. tabaci species. The expression of a novel miRNA in multiple B. tabaci species suggests that the miRNA evolved after panBC acquisition, and allowed this gene to be more tightly regulated. Our discovery provides the first account of a HTG being regulated by a miRNA from the host genome, and suggests key roles for interactions between miRNAs and HTGs in the functioning of symbiosis.
Collapse
Affiliation(s)
- Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Rui Xu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
8
|
Saranya M, Kennedy JS, Anandham R. Functional characterization of cultivable gut bacterial communities associated with rugose spiralling whitefly, Aleurodicus rugioperculatus Martin. 3 Biotech 2022; 12:14. [PMID: 34966637 PMCID: PMC8665909 DOI: 10.1007/s13205-021-03081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023] Open
Abstract
Gut symbiotic bacteria provide protection and nutrition to the host insect. A high reproductive rate and dispersal ability of the rugose spiralling whitefly help this polyphagous species to develop and thrive on many horticultural crops. In this study, we isolated the cultivable gut bacteria associated with rugose spiralling whitefly and demonstrated their role in the host insect. We also studied the influence of antibiotics on the rugose spiralling whitefly oviposition. A total of 70 gut bacteria were isolated from the second nymphal stage of rugose spiralling whitefly reared on coconut, banana, and sapota using seven growth media. From the 70 isolates, chitinase, siderophore (51), protease (44), and Glutathione-S-Transferase producers (16) were recorded. The activities of chitinase, siderophore, protease, and Glutathione-S-Transferase in the gut bacterial isolates of rugose spiralling whitefly ranged from 0.07 to 3.96 µmol-1 min-1 mL-1, 10.01 to 76.93%, 2.10 to 83.40%, and 5.21 to 24.48 nmol-1 min-1 mL-1 μg-1 protein, respectively. The16S rRNA gene sequence analysis revealed that bacterial genera associated with the gut of rugose spiralling whitefly included Bacillus, Exiguobacterium, Acinetobacter, Lysinibacillus, Arthrobacter, and Pseudomonas. Based on the susceptibility of the gut bacteria to antibiotics, 11antibiotic treatments were administered to the host plant leaves infested with the nymphal stages. The antibiotics were evaluated for their effect on rugose spiralling whitefly oviposition. Among the antibiotic treatments, carbenicillin (100 µg mL-1) + ciprofloxacin (5 µg mL-1) significantly reduced the oviposition (13 eggs spiral-1) and egg hatchability (61.54%) of rugose spiralling whitefly. Disruption of chitinase, siderophore, protease, and detoxification enzyme producers and elimination of these symbionts through antibiotics altered the host insect physiology and indirectly affected whitefly oviposition. In conclusion, gut bacteria-based management strategies might be used as insecticides for the effective control of whiteflies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03081-3.
Collapse
Affiliation(s)
- M. Saranya
- grid.412906.80000 0001 2155 9899Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - J. S. Kennedy
- grid.412906.80000 0001 2155 9899Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - R. Anandham
- grid.412906.80000 0001 2155 9899Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| |
Collapse
|
9
|
Bao XY, Yan JY, Yao YL, Wang YB, Visendi P, Seal S, Luan JB. Lysine provisioning by horizontally acquired genes promotes mutual dependence between whitefly and two intracellular symbionts. PLoS Pathog 2021; 17:e1010120. [PMID: 34843593 PMCID: PMC8659303 DOI: 10.1371/journal.ppat.1010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/09/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.
Collapse
Affiliation(s)
- Xi-Yu Bao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin-Yang Yan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yan-Bin Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan Seal
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- * E-mail:
| |
Collapse
|
10
|
Milenovic M, Ghanim M, Hoffmann L, Rapisarda C. Whitefly endosymbionts: IPM opportunity or tilting at windmills? JOURNAL OF PEST SCIENCE 2021; 95:543-566. [PMID: 34744550 PMCID: PMC8562023 DOI: 10.1007/s10340-021-01451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/23/2023]
Abstract
Whiteflies are sap-sucking insects responsible for high economic losses. They colonize hundreds of plant species and cause direct feeding damage and indirect damage through transmission of devastating viruses. Modern agriculture has seen a history of invasive whitefly species and populations that expand to novel regions, bringing along fierce viruses. Control efforts are hindered by fast virus transmission, insecticide-resistant populations, and a wide host range which permits large natural reservoirs for whiteflies. Augmentative biocontrol by parasitoids while effective in suppressing high population densities in greenhouses falls short when it comes to preventing virus transmission and is ineffective in the open field. A potential source of much needed novel control strategies lays within a diverse community of whitefly endosymbionts. The idea to exploit endosymbionts for whitefly control is as old as identification of these bacteria, yet it still has not come to fruition. We review where our knowledge stands on the aspects of whitefly endosymbiont evolution, biology, metabolism, multitrophic interactions, and population dynamics. We show how these insights are bringing us closer to the goal of better integrated pest management strategies. Combining most up to date understanding of whitefly-endosymbiont interactions and recent technological advances, we discuss possibilities of disrupting and manipulating whitefly endosymbionts, as well as using them for pest control.
Collapse
Affiliation(s)
- Milan Milenovic
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| | - Murad Ghanim
- Department of Entomology, Volcani Center, ARO, HaMaccabim Road 68, PO Box 15159, 7528809 Rishon Le Tsiyon, Israel
| | - Lucien Hoffmann
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
11
|
Van Meyel S, Devers S, Dupont S, Dedeine F, Meunier J. Alteration of gut microbiota with a broad-spectrum antibiotic does not impair maternal care in the European earwig. J Evol Biol 2021; 34:1034-1045. [PMID: 33877702 DOI: 10.1111/jeb.13791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
The microbes residing within the gut of an animal host often increase their own fitness by modifying their host's physiological, reproductive and behavioural functions. Whereas recent studies suggest that they may also shape host sociality and therefore have critical effects on animal social evolution, the impact of the gut microbiota on maternal care remains unexplored. This is surprising, as this behaviour is widespread among animals, often determines the fitness of both juveniles and parents, and is essential in the evolution of complex animal societies. Here, we tested whether life-long alterations of the gut microbiota with rifampicin-a broad-spectrum antibiotic-impair pre- and post-hatching maternal care in the European earwig. Our results first confirm that rifampicin altered the mothers' gut microbial communities and indicate that the composition of the gut microbiota differs before and after egg care. Contrary to our predictions, however, the rifampicin-induced alterations of the gut microbiota did not modify pre- or post-hatching care. Independent of maternal care, rifampicin increased the females' faeces production and resulted in lighter eggs and juveniles. By contrast, rifampicin altered none of the other 21 physiological, reproductive and longevity traits measured over the 300 days of a female's lifetime. Overall, these findings reveal that altering the gut microbiota with a large spectrum antibiotic such as rifampicin does not necessarily affect host sociality. They also emphasize that not all animals have evolved a co-dependence with their microbiota and call for caution when generalizing the central role of gut microbes in host biology.
Collapse
Affiliation(s)
- Sophie Van Meyel
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| |
Collapse
|
12
|
Isothiazolinones as Novel Candidate Insecticides for the Control of Hemipteran Insects. Antibiotics (Basel) 2021; 10:antibiotics10040436. [PMID: 33919688 PMCID: PMC8069810 DOI: 10.3390/antibiotics10040436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022] Open
Abstract
Hemipteran insects, such as whiteflies, aphids and planthoppers, resemble one of the most important pest groups threating food security. While many insecticides have been used to control these pests, many issues such as insecticide resistance have been found, highlighting the urgent need to develop novel insecticides. Here, we first observed that a commercial tetramycin solution was highly effective in killing whitefly. The major bioactive constituents were identified to be isothiazolinones, a group of biocides. We then tested the toxicity of several isothiazolinones to five hemipteran insects. The results show that Kathon, a widely used biocide against microorganisms, and its two constituents, chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT), can cause considerable levels of mortality to whiteflies and aphids when applied at concentrations close to, or lower than, the upper limit of these chemicals permitted in cosmetic products. The results also indicate that two other isothiazolinones, benzisothiazolinone (BIT) and octylisothiazolinone (OIT) can cause considerable levels of mortality to whitefly and aphids but are less toxic than Kathon. Further, we show that Kathon marginally affects whitefly endosymbionts, suggesting its insecticidal activity is independent of its biocidal activity. These results suggest that some isothiazolinones are promising candidates for the development of a new class of insecticides for the control of hemipteran pests.
Collapse
|
13
|
Yang Z, Gong C, Hu Y, Zhong J, Xia J, Xie W, Yang X, Guo Z, Wang S, Wu Q, Zhang Y. Two Deoxythymidine Triphosphate Synthesis-Related Genes Regulate Obligate Symbiont Density and Reproduction in the Whitefly Bemisia tabaci MED. Front Physiol 2021; 11:574749. [PMID: 33716755 PMCID: PMC7943623 DOI: 10.3389/fphys.2020.574749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxythymidine triphosphate (dTTP) is essential for DNA synthesis and cellular growth in all organisms. Here, genetic capacity analysis of the pyrimidine pathway in insects and their symbionts revealed that dTTP is a kind of metabolic input in several host insect/obligate symbiont symbiosis systems, including Bemisia tabaci MED/Candidatus Portiera aleyrodidarum (hereafter Portiera). As such, the roles of dTTP on both sides of the symbiosis system were investigated in B. tabaci MED/Portiera. Dietary RNA interference (RNAi) showed that suppressing dTTP production significantly reduced the density of Portiera, significantly repressed the expression levels of horizontally transferred essential amino acid (EAA) synthesis-related genes, and significantly decreased the reproduction of B. tabaci MED adults as well as the hatchability of their offspring. Our results revealed the regulatory role of dTTP in B. tabaci MED/Portiera and showed that dTTP synthesis-related genes could be potential targets for controlling B. tabaci as well as other sucking pests.
Collapse
Affiliation(s)
- Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Pantothenate mediates the coordination of whitefly and symbiont fitness. ISME JOURNAL 2021; 15:1655-1667. [PMID: 33432136 DOI: 10.1038/s41396-020-00877-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/11/2023]
Abstract
Intracellular symbionts in insects often have reduced genomes. Host acquisition of genes from bacteria is an important adaptation that supports symbionts. However, the function of horizontally transferred genes in insect symbiosis remains largely unclear. The primary symbiont Portiera housed in bacteriocytes lacks pantothenate synthesis genes: panB and panC, which is presumably complemented by a fused gene panB-panC (hereafter panBC) horizontally transferred from bacteria in Bemisia tabaci MEAM1. We found panBC in many laboratory cultures, and species of B. tabaci shares a common evolutionary origin. We demonstrated that complementation with whitefly panBC rescued E. coli pantothenate gene knockout mutants. Portiera elimination decreased the pantothenate level and PanBC abundance in bacteriocytes, and reduced whitefly survival and fecundity. Silencing PanBC decreased the Portiera titer, reduced the pantothenate level, and decreased whitefly survival and fecundity. Supplementation with pantothenate restored the symbiont titer, PanBC level, and fitness of RNAi whiteflies. These data suggest that pantothenate synthesis requires cooperation and coordination of whitefly PanBC expression and Portiera. This host-symbiont co-regulation was mediated by the pantothenate level. Our findings demonstrated that pantothenate production, by the cooperation of a horizontally acquired, fused bacteria gene and Portiera, facilitates the coordination of whitefly and symbiont fitness. Thus, this study extends our understanding on the basis of complex host-symbiont interactions.
Collapse
|
15
|
Ourry M, Lopez V, Hervé M, Lebreton L, Mougel C, Outreman Y, Poinsot D, Cortesero AM. Long-lasting effects of antibiotics on bacterial communities of adult flies. FEMS Microbiol Ecol 2020; 96:5775305. [PMID: 32123899 DOI: 10.1093/femsec/fiaa028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/01/2023] Open
Abstract
Insect symbionts benefit their host and their study requires large spectrum antibiotic use like tetracycline to weaken or suppress symbiotic communities. While antibiotics have a negative impact on insect fitness, little is known about antibiotic effects on insect microbial communities and how long they last. We characterized the bacterial communities of adult cabbage root fly Delia radicum in a Wolbachia-free population and evaluated the effect of tetracycline treatment on these communities over several generations. Three D. radicum generations were used: the first- and second-generation flies either ingested tetracycline or not, while the third-generation flies were untreated but differed with their parents and/or grandparents that had or had not been treated. Fly bacterial communities were sequenced using a 16S rRNA gene. Tetracycline decreased fly bacterial diversity and induced modifications in both bacterial abundance and relative frequencies, still visible on untreated offspring whose parents and/or grandparents had been treated, therefore demonstrating long-lasting transgenerational effects on animal microbiomes after antibiotic treatment. Flies with an antibiotic history shared bacterial genera, potentially tetracycline resistant and heritable. Next, the transmission should be investigated by comparing several insect development stages and plant compartments to assess vertical and horizontal transmissions of D. radicum bacterial communities.
Collapse
Affiliation(s)
- Morgane Ourry
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | - Valérie Lopez
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | - Maxime Hervé
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | - Lionel Lebreton
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | - Christophe Mougel
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | - Yannick Outreman
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | - Denis Poinsot
- Agrocampus Ouest, INRAE, Université de Rennes, IGEPP, F-35000 Rennes, France
| | | |
Collapse
|
16
|
Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. INSECTS 2020; 11:insects11110775. [PMID: 33182634 PMCID: PMC7696030 DOI: 10.3390/insects11110775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
Whiteflies (Hemiptera: Aleyrodidae) are sap-feeding global agricultural pests. These piercing-sucking insects have coevolved with intracellular endosymbiotic bacteria that help to supplement their nutrient-poor plant sap diets with essential amino acids and carotenoids. These obligate, primary endosymbionts have been incorporated into specialized organs called bacteriomes where they sometimes coexist with facultative, secondary endosymbionts. All whitefly species harbor the primary endosymbiont Candidatus Portiera aleyrodidarum and have a variable number of secondary endosymbionts. The secondary endosymbiont complement harbored by the cryptic whitefly species Bemisia tabaci is particularly complex with various assemblages of seven different genera identified to date. In this review, we discuss whitefly associated primary and secondary endosymbionts. We focus on those associated with the notorious B. tabaci species complex with emphasis on their biological characteristics and diversity. We also discuss their interactions with phytopathogenic begomoviruses (family Geminiviridae), which are transmitted exclusively by B. tabaci in a persistent-circulative manner. Unraveling the complex interactions of these endosymbionts with their insect hosts and plant viruses could lead to advancements in whitefly and whitefly transmitted virus management.
Collapse
Affiliation(s)
- Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
| | - Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
- Correspondence:
| |
Collapse
|
17
|
Zhao DX, Zhang ZC, Niu HT, Guo HF. Selective and stable elimination of endosymbionts from multiple-infected whitefly Bemisia tabaci by feeding on a cotton plant cultured in antibiotic solutions. INSECT SCIENCE 2020; 27:964-974. [PMID: 31232523 DOI: 10.1111/1744-7917.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
The maternally heritable endosymbiont provides many ecosystem functions. Antibiotic elimination of a specific symbiont and establishment of experimental host lines lacking certain symbionts enable the roles of a given symbiont to be explored. The whitefly Bemisia tabaci (Gennadius) in China harbors obligate symbiont Portiera infecting each individual, as well as facultative symbionts, such as Hamiltonella, Rickettsia and Cardinium, with co-infections occurring relatively frequently. So far no studies have evaluated the selectivity and efficacy of a specific symbiont elimination using antibiotics in whiteflies co-infected with different symbionts. Furthermore, no success has been achieved in establishing certain symbiont-free B. tabaci lines. In this study, we treated Hamiltonella-infected B. tabaci line, Hamiltonella-Rickettsia-co-infected line and Hamiltonella-Cardinium co-infected line by feeding B. tabaci adults with cotton plants cultured in water containing rifampicin, ampicillin or a mixture of them, aiming to selectively curing symbiont infections and establishing stable symbiont-free lines. We found ampicillin selectively eliminated Cardinium without affecting Portiera, Hamiltonella and Rickettsia, although they coexisted in the same host body. Meanwhile, all of the symbionts considered in our study can be removed by rifampicin. The reduction of facultative symbionts occurred at a much quicker pace than obligate symbiont Portiera during rifampicin treatment. Also, we measured the stability of symbiont elimination in whitefly successive generations and established Rickettsia-infected and Cardinium-infected lines which are absent in natural populations. Our results provide new protocols for selective elimination of symbionts co-existing in a host and establishment of different symbiont-infected host lines.
Collapse
Affiliation(s)
- Dong-Xiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhi-Chun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hong-Tao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui-Fang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
18
|
Liu Y, Fan ZY, An X, Shi PQ, Ahmed MZ, Qiu BL. A single-pair method to screen Rickettsia-infected and uninfected whitefly Bemisia tabaci populations. J Microbiol Methods 2020; 168:105797. [DOI: 10.1016/j.mimet.2019.105797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
|
19
|
Shan HW, Luan JB, Liu YQ, Douglas AE, Liu SS. The inherited bacterial symbiont Hamiltonella influences the sex ratio of an insect host. Proc Biol Sci 2019; 286:20191677. [PMID: 31744432 PMCID: PMC6892053 DOI: 10.1098/rspb.2019.1677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
In many intracellular symbioses, the microbial symbionts provide nutrients advantageous to the host. However, the function of Hamiltonella defensa, a symbiotic bacterium localized in specialized host cells (bacteriocytes) of a whitefly Bemisia tabaci, is uncertain. We eliminate this bacterium from its whitefly host by two alternative methods: heat treatment and antibiotics. The sex ratio of the host progeny and subsequent generations of Hamiltonella-free females was skewed from 1 : 1 (male : female) to an excess of males, often exceeding a ratio of 20 : 1. B. tabaci is haplodiploid, with diploid females derived from fertilized eggs and haploid males from unfertilized eggs. The Hamiltonella status of the insect did not affect copulation frequency or sperm reserve in the spermathecae, indicating that the male-biased sex ratio is unlikely due to the limitation of sperm but likely to be associated with events subsequent to sperm transfer to the female insects, such as failure in fertilization. The host reproductive response to Hamiltonella elimination is consistent with two alternative processes: adaptive shift in sex allocation by females and a constitutive compensatory response of the insect to Hamiltonella-mediated manipulation. Our findings suggest that a bacteriocyte symbiont influences the reproductive output of female progeny in a haplodiploid insect.
Collapse
Affiliation(s)
- Hong-Wei Shan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Jun-Bo Luan
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
20
|
Kanakala S, Ghanim M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS One 2019; 14:e0213946. [PMID: 30889213 PMCID: PMC6424426 DOI: 10.1371/journal.pone.0213946] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
Bemisia tabaci is one of the most threatening pests in agriculture, causing significant losses to many important crops on a global scale. The dramatic increase and availability of sequence data for B. tabaci species complex and its bacterial endosymbionts is critical for developing emerging sustainable pest management strategies which are based on pinpointing the global diversity of this important pest and its bacterial endosymbionts. To unravel the global genetic diversity of B. tabaci species complex focusing on its associated endosymbionts, along with Israeli whitefly populations collected in this study, we combined available sequences in databases, resulting in a total of 4,253 mitochondrial cytochrome oxidase I (mtCOI) sequences from 82 countries and 1,226 16S/23S rRNA endosymbiont sequences from 32 countries that were analyzed. Using Bayesian phylogenetic analysis, we identified two new B. tabaci groups within the species complex and described the global distribution of endosymbionts within this complex. Our analyses revealed complex divergence of the different endosymbiont sequences within the species complex, with overall one Hamiltonella, two Porteria (P1 and P2), two Arsenophonus (A1 and A2), two Wolbachia (super-groups O and B), four Cardinium (C1-C4) and three Rickettsia (R1-R3) groups were identified. Our comprehensive analysis provides an updated important resource for this globally important pest and its secondary symbionts, which have been a major subject for research in last three decades.
Collapse
Affiliation(s)
- Surapathrudu Kanakala
- Department of Entomology, Agricultural Research Organization—the Volcani Center, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization—the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
21
|
Guo Q, Shu YN, Liu C, Chi Y, Liu YQ, Wang XW. Transovarial transmission of tomato yellow leaf curl virus by seven species of the Bemisia tabaci complex indigenous to China: Not all whiteflies are the same. Virology 2019; 531:240-247. [PMID: 30933715 PMCID: PMC6990403 DOI: 10.1016/j.virol.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/17/2019] [Accepted: 03/17/2019] [Indexed: 11/28/2022]
Abstract
Begomoviruses contain some of the most damaging viral disease agents of crops worldwide, and are transmitted by whiteflies of the Bemisia tabaci species complex. During the last 20 years, transovarial transmission of tomato yellow leaf curl virus (TYLCV) has been reported in two invasive species of the B. tabaci complex. To further decipher the importance of this mode of transmission, we analyzed transovarial transmission of TYLCV by seven whitefly species indigenous to China. TYLCV virions were detected in eggs of all species except one, and in nymphs of two species, but in none of the ensuing adults of all seven species. Our results suggest that these indigenous whiteflies are unable to transmit TYLCV, a begomovirus alien to China, via ova to produce future generations of viruliferous adults, although most of the species exhibit varying ability to carry over the virus to the eggs/nymphs of their offspring via transovarial transmission.
Collapse
Affiliation(s)
- Qi Guo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Ni Shu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Chi
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Lv ZH, Wei XY, Tao YL, Chu D. Differential susceptibility of whitefly-associated bacteria to antibiotic as revealed by metagenomics analysis. INFECTION GENETICS AND EVOLUTION 2018; 63:24-29. [PMID: 29702243 DOI: 10.1016/j.meegid.2018.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Recent reports have suggested that different symbionts of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) have differential susceptibility to antibiotic treatment. Changes in the community structure of B. tabaci-associated bacterial microbiota (BABM) following antibiotic treatment, however, remain poorly understood, although increasing numbers of B. tabaci-associated bacteria have been reported in recent years. METHODOLOGY AND RESULTS The BABM of male or female B. tabaci Q (also known as B. tabaci MED species) were analyzed after being fed on artificial diet containing the antibiotic rifampicin and compared with untreated controls. The bacterial 16S rDNA gene amplicon metagenomic sequencing method was used in the analyses. The results showed that the BABM in male and female adults have different characteristics, and that the community structure of the BABM changes drastically following antibiotic treatment. Further analysis of the endosymbionts in B. tabaci showed that the relative abundance of the primary endosymbiont, Portiera, increased in females but was unchanged in male whiteflies, while that of the secondary endosymbiont, Hamiltonella, significantly decreased in both male and female whiteflies. The secondary endosymbionts, Cardinium and Rickettsia, were apparently not affected in either male or female whiteflies. CONCLUSIONS The community structure of BABM can be drastically altered following treatment with the antibiotic, rifampicin. This may be due to different antibiotic susceptibilities among the bacterial species. These results provide valuable insights into the innate differences in the BABM of male and female whiteflies, as well as structural changes that occur in the BABM in response to exposure to an antibiotic.
Collapse
Affiliation(s)
- Zhen-Hong Lv
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ying Wei
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun-Li Tao
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
23
|
Rosas T, García-Ferris C, Domínguez-Santos R, Llop P, Latorre A, Moya A. Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiol Ecol 2018; 94:4794938. [DOI: 10.1093/femsec/fiy002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023] Open
|
24
|
Shan HW, Deng WH, Luan JB, Zhang MJ, Zhang Z, Liu SS, Liu YQ. Thermal sensitivity of bacteriocytes constrains the persistence of intracellular bacteria in whitefly symbiosis under heat stress. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:706-716. [PMID: 28585771 DOI: 10.1111/1758-2229.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Temperature affects the persistence of diverse symbionts of insects. Our previous study indicates that the whitefly symbionts confined within bacteriocytes or scattered throughout the body cavity outside bacteriocytes may have differential thermal sensitivity. However, the underlying mechanisms remain largely unknown. Here, we report that following continuous heat stress, Portiera and Hamiltonella were almost completely depleted in two species of Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) of the Bemisia tabaci whitefly cryptic species complex. Meanwhile, proliferation of bacteriocytes was severely inhibited and approximately 50% of the nymphs had lost one of the two bacteriomes. While cell size of bacteriocytes was increased, cell number was severely decreased leading to reduction of total volume of bacteriocytes. Moreover, bacteriocyte organelles and associated symbionts were lysed, and huge amount of electron-dense inclusions accumulated. Eventually, Portiera and Hamiltonella failed to be transmitted to the next generation. In contrast, Rickettsia could be detected although at a reduced level, and successfully transmitted to eggs. The results suggest that the thermal sensitivity of bacteriocytes may limit thermal tolerance and vertical transmission of the associated symbionts, and consequently different patterns of distribution of symbionts may affect their capacity to tolerate unfavourable temperatures and persistence in the host.
Collapse
Affiliation(s)
- Hong-Wei Shan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hao Deng
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun-Bo Luan
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Min-Jing Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Zhu DT, Wang XR, Ban FX, Zou C, Liu SS, Wang XW. Methods for the Extraction of Endosymbionts from the Whitefly Bemisia tabaci. J Vis Exp 2017. [PMID: 28654044 DOI: 10.3791/55809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacterial symbionts form an intimate relationship with their hosts and confer advantages to the hosts in most cases. Genomic information is critical to study the functions and evolution of bacterial symbionts in their host. As most symbionts cannot be cultured in vitro, methods to isolate an adequate quantity of bacteria for genome sequencing are very important. In the whitefly Bemisia tabaci, a number of endosymbionts have been identified and are predicted to be of importance in the development and reproduction of the pests through multiple approaches. However, the mechanism underpinning the associations remains largely unknown. The obstacle partially comes from the fact that the endosymbionts in whitefly, mostly restrained in bacteriocytes, are hard to separate from the host cells. Here we report a step-by-step protocol for the identification, extraction and purification of endosymbionts from the whitefly B. tabaci mainly by dissection and filtration. Endosymbiont samples prepared by this method, although still a mixture of different endosymbiont species, are suitable for subsequent genome sequencing and analysis of the possible roles of endosymbionts in B. tabaci. This method may also be used to isolate endosymbionts from other insects.
Collapse
Affiliation(s)
- Dan-Tong Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogen and Insects, Institute of Insect Sciences, Zhejiang University
| | - Xin-Ru Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogen and Insects, Institute of Insect Sciences, Zhejiang University
| | - Fei-Xue Ban
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogen and Insects, Institute of Insect Sciences, Zhejiang University
| | - Chi Zou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogen and Insects, Institute of Insect Sciences, Zhejiang University
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogen and Insects, Institute of Insect Sciences, Zhejiang University
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogen and Insects, Institute of Insect Sciences, Zhejiang University;
| |
Collapse
|
26
|
Wang B, Wang L, Chen F, Yang X, Ding M, Zhang Z, Liu SS, Wang XW, Zhou X. MicroRNA profiling of the whitefly Bemisia tabaci Middle East-Aisa Minor I following the acquisition of Tomato yellow leaf curl China virus. Virol J 2016; 13:20. [PMID: 26837429 PMCID: PMC4736103 DOI: 10.1186/s12985-016-0469-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background The begomoviruses are the largest and most economically important group of plant viruses exclusively vectored by whitefly (Bemisia tabaci) in a circulative, persistent manner. During this process, begomoviruses and whitefly vectors have developed close relationships and complex interactions. However, the molecular mechanisms underlying these interactions remain largely unknown, and the microRNA profiles for viruliferous and nonviruliferous whiteflies have not been studied. Methods Sequences of Argonaute 1(Ago1) and Dicer 1 (Dcr1) genes were cloned from B. tabaci MEAM1 cDNAs. Subsequently, deep sequencing of small RNA libraries from uninfected and Tomato yellow leaf curl China virus (TYLCCNV)-infected whiteflies was performed. The conserved and novel miRNAs were identified using the release of miRBase Version 19.0 and the prediction software miRDeep2, respectively. The sequencing results of selected deregulated and novel miRNAs were further confirmed using quantitative reverse transcription-PCR. Moreover, the previously published B. tabaci MEAM1 transcriptome database and the miRNA target prediction algorithm miRanda 3.1 were utilized to predict potential targets for miRNAs. Gene Ontology (GO) analysis was also used to classify the potential enriched functional groups of their putative targets. Results Ago1 and Dcr1orthologs with conserved domains were identified from B. tabaci MEAM1. BLASTn searches and sequence analysis identified 112 and 136 conserved miRNAs from nonviruliferous and viruliferous whitefly libraries respectively, and a comparison of the conserved miRNAs of viruliferous and nonviruliferous whiteflies revealed 15 up- and 9 down-regulated conserved miRNAs. 7 novel miRNA candidates with secondary pre-miRNA hairpin structures were also identified. Potential targets of conserved and novel miRNAs were predicted using GO analysis, for the targets of up- and down-regulated miRNAs, eight and nine GO terms were significantly enriched. Conclusions We identified Ago1 and Dcr1 orthologs from whiteflies, which indicated that miRNA-mediated silencing is present in whiteflies. Our comparative analysis of miRNAs from TYLCCNV viruliferous and nonviruliferous whiteflies revealed the relevance of deregulated miRNAs for the post-transcriptional gene regulation in these whiteflies. The potential targets of all expressed miRNAs were also predicted. These results will help to acquire a better understanding of the molecular mechanism underlying the complex interactions between begomoviruses and whiteflies. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0469-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Lanlan Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Fangyuan Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiuling Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Ming Ding
- Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, People's Republic of China.
| | - Zhongkai Zhang
- Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, People's Republic of China.
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
27
|
Zhang CR, Shan HW, Xiao N, Zhang FD, Wang XW, Liu YQ, Liu SS. Differential temporal changes of primary and secondary bacterial symbionts and whitefly host fitness following antibiotic treatments. Sci Rep 2015; 5:15898. [PMID: 26510682 PMCID: PMC4625128 DOI: 10.1038/srep15898] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/07/2015] [Indexed: 11/09/2022] Open
Abstract
Where multiple symbionts coexist in the same host, the selective elimination of a specific symbiont may enable the roles of a given symbiont to be investigated. We treated the Mediterranean species of the whitefly Bemisia tabaci complex by oral delivery of the antibiotic rifampicin, and then examined the temporal changes of its primary symbiont "Candidatus Portiera aleyrodidarum" and secondary symbiont "Ca. Hamiltonella defensa" as well as host fitness for three generations. In adults treated with rifampicin (F0), the secondary symbiont was rapidly reduced, approaching complete disappearance as adults aged. In contrast, the primary symbiont was little affected until later in the adult life. In the offspring of these adults (F1), both symbionts were significantly reduced and barely detectable when the hosts reached the adult stage. The F1 adults laid few eggs (F2), all of which failed to hatch. Mating experiments illustrated that the negative effects of rifampicin on host fitness were exerted via female hosts but not males. This study provides the first evidence of differential temporal reductions of primary and secondary symbionts in whiteflies following an antibiotic treatment. Studies that disrupt functions of bacterial symbionts must consider their temporal changes.
Collapse
Affiliation(s)
- Chang-Rong Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Wei Shan
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Na Xiao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan-Di Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|