1
|
Lv P, Yang X, Zhao X, Zhao Z, Du J. Genome-wide profiles of H3K9me3, H3K27me3 modifications, and DNA methylation during diapause of Asian corn borer ( Ostrinia furnacalis). Genome Res 2024; 34:725-739. [PMID: 38866549 PMCID: PMC11216315 DOI: 10.1101/gr.278661.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
Diapause represents a crucial adaptive strategy used by insects to cope with changing environmental conditions. In North China, the Asian corn borer (Ostrinia furnacalis) enters a winter larval diapause stage. Although there is growing evidence implicating epigenetic mechanisms in diapause regulation, it remains unclear whether dynamic genome-wide profiles of epigenetic modifications exist during this process. By investigating multiple histone modifications, we have discovered the essential roles of H3K9me3 and H3K27me3 during diapause of the Asian corn borer. Building upon previous findings in vertebrates highlighting the connection between DNA methylation and repressive histone methylations, we have examined changes in the genome-wide profile of H3K9me3, H3K27me3, and DNA methylation at the nondiapause, prediapause, and diapause stages. Data analysis reveals significant alterations in these three modifications during diapause. Moreover, we observe a correlation between the H3K9me3 and H3K27me3 modification sites during diapause, whereas DNA modifications show little association with either H3K9me3 or H3K27me3. Integrative analysis of epigenome and expression data unveils the relationship between these epigenetic modifications and gene expression levels at corresponding diapause stages. Furthermore, by studying the function of histone modifications on genes known to be important in diapause, especially those involved in the juvenile pathway, we discover that the juvenile hormone pathway lies downstream from H3K9me3 and H3K27me3 histone modifications. Finally, the analysis of gene loci with modified modifications unreported in diapause uncovers novel pathways potentially crucial in diapause regulation. This study provides a valuable resource for future investigations aiming to elucidate the underlying mechanisms of diapause.
Collapse
Affiliation(s)
- Pengfei Lv
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xingzhuo Yang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Chen C, Yin Y, Li H, Zhou B, Zhou J, Zhou X, Li Z, Liu G, Pan X, Zhang R, Lin Z, Chen L, Qiu Q, Zhang YE, Wang W. Ruminant-specific genes identified using high-quality genome data and their roles in rumen evolution. Sci Bull (Beijing) 2022; 67:825-835. [PMID: 36546235 DOI: 10.1016/j.scib.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
Abstract
Ruminants comprise a highly successful group of mammals with striking morphological innovations, including the presence of a rumen. Many studies have shown that species-specific or lineage-specific genes (referred to as new genes) play important roles in phenotypic evolution. In this study, we identified 1064 ruminant-specific genes based on the newly assembled high-quality genomes of representative members of two ruminant families and other publically available high-quality genomes. Ruminant-specific genes shared similar evolutionary and expression patterns with new genes found in other mammals, such as primates and rodents. Most new genes were derived from gene duplication and tended to be expressed in the testes or immune-related tissues, but were depleted in the adult brain. We also found that most genes expressed in the rumen were genes predating sheep-sperm whale split (referred to as old genes), but some new genes were also involved in the evolution of the rumen, and contributed more during rumen development than in the adult rumen. Notably, expression levels of members of the ruminant-specific PRD-SPRRII gene family, which are subject to positive selection, varied throughout rumen development and may thus play important roles in the development of the keratin-rich surface of the rumen. Overall, this study generated two novel ruminant genomes and also provided novel insights into the evolution of new mammalian organs.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaofang Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiangyu Pan
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
3
|
Li J, Jiang L, Wu CI, Lu X, Fang S, Ting CT. Small Segmental Duplications in Drosophila-High Rate of Emergence and Elimination. Genome Biol Evol 2019; 11:486-496. [PMID: 30689862 PMCID: PMC6380325 DOI: 10.1093/gbe/evz011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Segmental duplications are an important class of mutations. Because a large proportion of segmental duplications may often be strongly deleterious, high frequency or fixed segmental duplications may represent only a tiny fraction of the mutational input. To understand the emergence and elimination of segmental duplications, we survey polymorphic duplications, including tandem and interspersed duplications, in natural populations of Drosophila by haploid embryo genomes. As haploid embryos are not expected to be heterozygous, the genome, sites of heterozygosity (referred to as pseudoheterozygous sites [PHS]), may likely represent recent duplications that have acquired new mutations. Among the 29 genomes of Drosophila melanogaster, we identify 2,282 polymorphic PHS duplications (linked PHS regions) in total or 154 PHS duplications per genome. Most PHS duplications are small (83.4% < 500 bp), Drosophila melanogaster lineage specific, and strain specific (72.6% singletons). The excess of the observed singleton PHS duplications deviates significantly from the neutral expectation, suggesting that most PHS duplications are strongly deleterious. In addition, these small segmental duplications are not evenly distributed in genomic regions and less common in noncoding functional element regions. The underrepresentation in RNA polymerase II binding sites and regions with active histone modifications is correlated with ages of duplications. In conclusion, small segmental duplications occur frequently in Drosophila but rapidly eliminated by natural selection.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Lan Jiang
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chung-I Wu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China.,Department of Ecology and Evolution, University of Chicago.,School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Xuemei Lu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Beijing; CAS Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, Chinese Academy of Sciences, China
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chau-Ti Ting
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Center for Biotechnology, Center for Developmental Biology and Regenerative Medicine, National Taiwan University.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Klasberg S, Bitard-Feildel T, Mallet L. Computational Identification of Novel Genes: Current and Future Perspectives. Bioinform Biol Insights 2016; 10:121-31. [PMID: 27493475 PMCID: PMC4970615 DOI: 10.4137/bbi.s39950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022] Open
Abstract
While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies.
Collapse
Affiliation(s)
- Steffen Klasberg
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| | - Tristan Bitard-Feildel
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| | - Ludovic Mallet
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| |
Collapse
|