1
|
Beaurepaire A, Arredondo D, Genchi-García ML, Castelli L, Reynaldi FJ, Antunez K, Invernizzi C, Mondet F, Le Conte Y, Dalmon A. Genetic diversification of an invasive honey bee ectoparasite across sympatric and allopatric host populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105340. [PMID: 35853582 DOI: 10.1016/j.meegid.2022.105340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Invasive parasites are major threats to biodiversity. The honey bee ectoparasite, Varroa destructor, has shifted host and spread almost globally several decades ago. This pest is generally considered to be the main global threat to Western honey bees, Apis mellifera, although the damages it causes are not equivalent in all its new host's populations. Due to the high virulence of this parasite and the viruses it vectors, beekeepers generally rely on acaricide treatments to keep their colonies alive. However, some populations of A. mellifera can survive without anthropogenic mite control, through the expression of diverse resistance and tolerance traits. Such surviving colonies are currently found throughout the globe, with the biggest populations being found in Sub-Saharan Africa and Latin America. Recently, genetic differences between mite populations infesting surviving and treated A. mellifera colonies in Europe were found, suggesting that adaptations of honey bees drive mite evolution. Yet, the prevalence of such co-evolutionary adaptations in other invasive populations of V. destructor remain unknown. Using the previous data from Europe and novel genetic data from V. destructor populations in South America and Africa, we here investigated whether mites display signs of adaptations to different host populations of diverse origins and undergoing differing management. Our results show that, contrary to the differences previously documented in Europe, mites infesting treated and untreated honey bee populations in Africa and South America are genetically similar. However, strong levels of genetic differentiation were found when comparing mites across continents, suggesting ongoing allopatric speciation despite a recent spread from genetically homogenous lineages. This study provides novel insights into the co-evolution of V. destructor and A. mellifera, and confirms that these species are ideal to investigate coevolution in newly established host-parasite systems.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- INRAE, UR Abeilles et Environnement, Avignon, France; Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland.
| | - Daniela Arredondo
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - María Laura Genchi-García
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland; Instituto Multidisciplinario de Biología Celular, La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Loreley Castelli
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Francisco Jose Reynaldi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Karina Antunez
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ciro Invernizzi
- Facultad de Ciencias, Universidad de la República de Uruguay, Montevideo, Uruguay
| | - Fanny Mondet
- INRAE, UR Abeilles et Environnement, Avignon, France
| | - Yves Le Conte
- INRAE, UR Abeilles et Environnement, Avignon, France
| | - Anne Dalmon
- INRAE, UR Abeilles et Environnement, Avignon, France
| |
Collapse
|
2
|
Kumar D, Alburaki M, Tahir F, Goblirsch M, Adamczyk J, Karim S. An Insight Into the microRNA Profile of the Ectoparasitic Mite Varroa destructor (Acari: Varroidae), the Primary Vector of Honey Bee Deformed Wing Virus. Front Cell Infect Microbiol 2022; 12:847000. [PMID: 35372101 PMCID: PMC8966896 DOI: 10.3389/fcimb.2022.847000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
The remarkably adaptive mite Varroa destructor is the most important honey bee ectoparasite. Varroa mites are competent vectors of deformed wing virus (DWV), and the Varroa-virus complex is a major determinant of annual honey bee colony mortality and collapse. MicroRNAs (miRNAs) are 22-24 nucleotide non-coding RNAs produced by all plants and animals and some viruses that influence biological processes through post-transcriptional regulation of gene expression. Knowledge of miRNAs and their function in mite biology remains limited. Here we constructed small RNA libraries from male and female V. destructor using Illumina's small RNA-Seq platform. A total of 101,913,208 and 91,904,732 small RNA reads (>18 nucleotides) from male and female mites were analyzed using the miRDeep2 algorithm. A conservative approach predicted 306 miRNAs, 18 of which were upregulated and 13 downregulated in female V. destructor compared with males. Quantitative real-time PCR validated the expression of selected differentially-expressed female Varroa miRNAs. This dataset provides a list of potential miRNA targets involved in regulating vital Varroa biological processes and paves the way for developing strategies to target Varroa and their viruses.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Mohamed Alburaki
- Bee Research Laboratory, Beltsville, United States Department of Agriculture, Agricultural Research Service (USDA ARS), Beltsville, MD, United States
| | - Faizan Tahir
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Michael Goblirsch
- Southern Horticultural Research Unit, USDA ARS, Poplarville, MS, United States
| | - John Adamczyk
- Southern Horticultural Research Unit, USDA ARS, Poplarville, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biology, University of Southern Mississippi, Hattiesburg, Hattiesburg, MS, United States
| |
Collapse
|
3
|
Techer MA, Roberts JMK, Cartwright RA, Mikheyev AS. The first steps toward a global pandemic: Reconstructing the demographic history of parasite host switches in its native range. Mol Ecol 2022; 31:1358-1374. [PMID: 34882860 PMCID: PMC11105409 DOI: 10.1111/mec.16322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Host switching allows parasites to expand their niches. However, successful switching may require suites of adaptations and also may decrease performance on the old host. As a result, reductions in gene flow accompany many host switches, driving speciation. Because host switches tend to be rapid, it is difficult to study them in real-time, and their demographic parameters remain poorly understood. As a result, fundamental factors that control subsequent parasite evolution, such as the size of the switching population or the extent of immigration from the original host, remain largely unknown. To shed light on the host switching process, we explored how host switches occur in independent host shifts by two ectoparasitic honey bee mites (Varroa destructor and V. jacobsoni). Both switched to the western honey bee (Apis mellifera) after being brought into contact with their ancestral host (Apis cerana), ~70 and ~12 years ago, respectively. Varroa destructor subsequently caused worldwide collapses of honey bee populations. Using whole-genome sequencing on 63 mites collected in their native ranges from both the ancestral and novel hosts, we were able to reconstruct the known temporal dynamics of the switch. We further found multiple previously undiscovered mitochondrial lineages on the novel host, along with the genetic equivalent of tens of individuals that were involved in the initial host switch. Despite being greatly reduced, some gene flow remains between mites adapted to different hosts. Our findings suggest that while reproductive isolation may facilitate the fixation of traits beneficial for exploiting the new host, ongoing genetic exchange may allow genetic amelioration of inbreeding effects.
Collapse
Affiliation(s)
- Maeva A Techer
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | - John M K Roberts
- Commonwealth Scientific & Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology, Okinawa, Japan
- Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Reams T, Rangel J. Understanding the Enemy: A Review of the Genetics, Behavior and Chemical Ecology of Varroa destructor, the Parasitic Mite of Apis mellifera. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:18. [PMID: 35137134 PMCID: PMC8825774 DOI: 10.1093/jisesa/ieab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 05/27/2023]
Abstract
Varroa destructor (Mesostigmata: Varroidae) is arguably the most damaging parasitic mite that attacks honey bees worldwide. Since its initial host switch from the Asian honey bee (Apis cerana) (Hymenoptera: Apidae) to the Western honey bee (Apis mellifera) (Hymenoptera: Apidae), Varroa has become a widely successful invasive species, attacking honey bees on almost every continent where apiculture is practiced. Two haplotypes of V. destructor (Japanese and Korean) parasitize A. mellifera, both of which vector various honey bee-associated viruses. As the population of Varroa grows within a colony in the spring and summer, so do the levels of viral infections. Not surprisingly, high Varroa parasitization impacts bees at the individual level, causing bees to exhibit lower weight, decreased learning capacity, and shorter lifespan. High levels of Varroa infestation can lead to colony-wide varroosis and eventually colony death, especially when no control measures are taken against the mites. Varroa has become a successful parasite of A. mellifera because of its ability to reproduce within both drone cells and worker cells, which allows populations to expand rapidly. Varroa uses several chemical cues to complete its life cycle, many of which remain understudied and should be further explored. Given the growing reports of pesticide resistance by Varroa in several countries, a better understanding of the mite's basic biology is needed to find alternative pest management strategies. This review focuses on the genetics, behavior, and chemical ecology of V. destructor within A. mellifera colonies, and points to areas of research that should be exploited to better control this pervasive honey bee enemy.
Collapse
Affiliation(s)
- Taylor Reams
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
5
|
Conlon BH, Kastally C, Kardell M, Kefuss J, Moritz RFA, Routtu J. Selection for outbreeding in
Varroa
parasitising resistant honey bee (
Apis mellifera
) colonies. Ecol Evol 2020. [DOI: 10.1002/ece3.6506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Benjamin H. Conlon
- Molecular Ecology Institute of Biology/Zoology Martin‐Luther‐University Halle‐Wittenberg Halle an der Saale Germany
- Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen Denmark
| | - Chedly Kastally
- Molecular Ecology Institute of Biology/Zoology Martin‐Luther‐University Halle‐Wittenberg Halle an der Saale Germany
- Department of Ecology and Evolution University of Oulu Oulu Finland
| | - Marina Kardell
- Molecular Ecology Institute of Biology/Zoology Martin‐Luther‐University Halle‐Wittenberg Halle an der Saale Germany
| | | | - Robin F. A. Moritz
- Molecular Ecology Institute of Biology/Zoology Martin‐Luther‐University Halle‐Wittenberg Halle an der Saale Germany
- Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Jarkko Routtu
- Molecular Ecology Institute of Biology/Zoology Martin‐Luther‐University Halle‐Wittenberg Halle an der Saale Germany
| |
Collapse
|
6
|
Beaurepaire A, Sann C, Arredondo D, Mondet F, Le Conte Y. Behavioral Genetics of the Interactions between Apis mellifera and Varroa destructor. INSECTS 2019; 10:E299. [PMID: 31527402 PMCID: PMC6780334 DOI: 10.3390/insects10090299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023]
Abstract
The western honeybee Apis mellifera exhibits a diverse set of adaptations in response to infestations by its most virulent disease-causing agent, the ectoparasitic mite Varroa destructor. In this study, we investigated the effect of honeybee pupae genotype on the expression of four host and parasite traits that are associated with the reproductive phase of the mite in the brood of its host. We first phenotyped cells containing bee pupae to assess their infestation status, their infestation level, the reproductive status of the mites, and the recapping of cells by adult workers. We then genotyped individual pupae with five microsatellites markers to compare these phenotypes across full sister groups. We found that the four phenotypes varied significantly in time but did not across the subfamilies within the colonies. These findings show that V. destructor mites do not differentially infest or reproduce on some particular honeybee patrilines, and that workers do not target preferentially specific pupae genotypes when performing recapping. These findings bring new insights that can help designing sustainable mite control strategies through breeding and provide new insights into the interactions between A. mellifera and V. destructor.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- Abeilles et Environnement, INRA Avignon, 84914 Avignon, France.
- Institute of Bee Health, University of Bern, 3000 Bern, Switzerland.
| | | | - Daniela Arredondo
- Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| | - Fanny Mondet
- Abeilles et Environnement, INRA Avignon, 84914 Avignon, France
| | - Yves Le Conte
- Abeilles et Environnement, INRA Avignon, 84914 Avignon, France
| |
Collapse
|
7
|
Population genetics of ectoparasitic mites suggest arms race with honeybee hosts. Sci Rep 2019; 9:11355. [PMID: 31388048 PMCID: PMC6684582 DOI: 10.1038/s41598-019-47801-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
The ectoparasitic mite, Varroa destructor, is the most severe biotic threat to honeybees (Apis mellifera) globally, usually causing colony death within a few years without treatments. While it is known that a few A. mellifera populations survive mite infestations by means of natural selection, the possible role of mite adaptations remains unclear. To investigate potential changes in mite populations in response to host adaptations, the genetic structure of V. destructor in the mite-resistant A. mellifera population on Gotland, Sweden, was studied. Spatio-temporal genetic changes were assessed by comparing mites collected in these colonies, as well as from neighboring mite-susceptible colonies, in historic (2009) and current (2017/2018) samples. The results show significant changes in the genetic structure of the mite populations during the time frame of this study. These changes were more pronounced in the V. destructor population infesting the mite-resistant honeybee colonies than in the mite-susceptible colonies. These results suggest that V. destructor populations are reciprocating, in a coevolutionary arms race, to the selection pressure induced by their honeybee host. Our data reveal exciting new insights into host-parasite interactions between A. mellifera and its major parasite.
Collapse
|
8
|
Abstract
Host shifts of parasites are often causing devastating effects in the new hosts. The Varroa genus is known for a lineage of Varroa destructor that shifted to the Western honey bee, Apis mellifera, with disastrous effects on wild populations and the beekeeping industry. Despite this, the biology of Varroa spp. remains poorly understood in its native distribution range, where it naturally parasitizes the Eastern honey bee, Apis cerana. Here, we combined mitochondrial and nuclear DNA analyses with the assessment of mite reproduction to determine the population structure and host specificity of V. destructor and Varroa jacobsonii in Thailand, where both hosts and several Varroa species and haplotypes are sympatric. Our data confirm previously described mite haplogroups, and show three novel haplotypes. Multiple infestations of single host colonies by both mite species and introgression of alleles between V. destructor and V. jacobsonii suggest that hybridization occurs between the two species. Our results indicate that host specificity and population genetic structure in the genus Varroa is more labile than previously thought. The ability of the host shifted V. destructor haplotype to spillback to A. cerana and to hybridize with V. jacobsonii could threaten honey bee populations of Asia and beyond.
Collapse
|
9
|
Gajić B, Muñoz I, De la Rúa P, Stevanović J, Lakić N, Kulišić Z, Stanimirović Z. Coexistence of genetically different Varroa destructor in Apis mellifera colonies. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:315-326. [PMID: 31197529 DOI: 10.1007/s10493-019-00395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the genetic diversity of Varroa destructor parasitizing Apis mellifera colonies and to test for possible host-parasite association at the mitochondrial DNA (mtDNA) level. Six A. mellifera haplotypes (including a novel C2aa) and five haplotypes of V. destructor were detected in 29 analyzed colonies from eight sampling sites in Serbia. We revealed the presence of the K and S1 haplotypes as well as KS1 and KP1 heteroplasmic mite individuals in all localities, while the P1 haplotype was only found in four sampling sites. Significant differences in V. destructor genetic diversity were found at both apiary and colony levels, with mite haplotypes coexisting in almost all tested colonies. In addition, a significant correlation between the number of analyzed mites per colony and the number of identified V. destructor haplotypes was observed. However, no significant host-parasite relationship was found, suggesting that mites bearing different haplotypes as well as those heteroplasmic individuals are well adapted to the host, A. mellifera, independently of the identified haplotype present in each colony. Our results will contribute to future population and biogeographic studies concerning V. destructor infesting A. mellifera, as well as to better understanding their host-parasite relationship.
Collapse
Affiliation(s)
- Bojan Gajić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia.
| | - Irene Muñoz
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Jevrosima Stevanović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Lakić
- Department of Statistics, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Zoran Kulišić
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|