1
|
Cheng Y, Zhou Y, Li C, Jin J. Cloning and functional analysis of the juvenile hormone receptor gene CsMet in Coccinella septempunctata. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:2. [PMID: 38958929 PMCID: PMC11221319 DOI: 10.1093/jisesa/ieae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
The potential role of the juvenile hormone receptor gene (methoprene-tolerant, Met) in reproduction of Coccinella septempunctata L. (Coleoptera: Coccinellidae)(Coleoptera: Coccinellidae), was investigated by cloning, analyzing expression profiles by quantitative real-time PCR, and via RNA interference (RNAi). CsMet encoded a 1518-bp open reading frames with a predicted protein product of 505 amino acids; the latter contained 2 Per-Arnt-Sim repeat profile at amino acid residues 30-83 and 102-175. CsMet was expressed in different C. septempunctata larvae developmental stages and was most highly expressed in third instar. CsMet expression in female adults gradually increased from 20 to 30 d, and expression levels at 25 and 30 d were significantly higher than levels at 1-15 d. CsMet expression in 20-d-old male adults was significantly higher than in males aged 1-15 d. CsMet expression levels in fat body tissues of male and female adults were significantly higher than expression in the head, thorax, and reproductive system. At 5 and 10 d after CsMet-dsRNA injection, CsMet expression was significantly lower than the controls by 75.05% and 58.38%, respectively. Ovary development and vitellogenesis in C. septempunctata injected with CsMet-dsRNA were significantly delayed and fewer mature eggs were produced. This study provides valuable information for the large-scale rearing of C. septempunctata.
Collapse
Affiliation(s)
- Ying Cheng
- Insect Research Group, Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Yuhang Zhou
- Insect Research Group, Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| | - Cao Li
- Insect Research Group, Guizhou Provincial Pollution-free Engineering Center of Plant Protection, Guiyang, China
| | - Jianxue Jin
- Insect Research Group, Institute of Plant Protection, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
2
|
Silva RBV, Coelho Júnior VG, de Paula Mattos Júnior A, Julidori Garcia H, Siqueira Caixeta Nogueira E, Mazzoni TS, Ramos Martins J, Rosatto Moda LM, Barchuk AR. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104627. [PMID: 38373613 DOI: 10.1016/j.jinsphys.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.
Collapse
Affiliation(s)
- Raissa Bayker Vieira Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Valdeci Geraldo Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Adolfo de Paula Mattos Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Henrique Julidori Garcia
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Lívia Maria Rosatto Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Salvia R, Scieuzo C, Boschi A, Pezzi M, Mistri M, Munari C, Chicca M, Vogel H, Cozzolino F, Monaco V, Monti M, Falabella P. An Overview of Ovarian Calyx Fluid Proteins of Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae): An Integrated Transcriptomic and Proteomic Approach. Biomolecules 2023; 13:1547. [PMID: 37892230 PMCID: PMC10605793 DOI: 10.3390/biom13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Boschi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
| | - Marco Pezzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Michele Mistri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Cristina Munari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße 8, D-07745 Jena, Germany;
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Yang B, Miao S, Lu Y, Wang S, Wang Z, Zhao Y. Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-mediated vitellogenesis of female Liposcelis entomophila (End.) (Psocoptera: Liposcelididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21973. [PMID: 36193599 PMCID: PMC10078567 DOI: 10.1002/arch.21973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/31/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.
Collapse
Affiliation(s)
- Bin‐Bin Yang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shi‐Yuan Miao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Yu‐Jie Lu
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
- College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Sui‐Sui Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Zheng‐Yan Wang
- School of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Ya‐Ru Zhao
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| |
Collapse
|
5
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
6
|
Han H, Feng Z, Han S, Chen J, Wang D, He Y. Molecular Identification and Functional Characterization of Methoprene-Tolerant (Met) and Krüppel-Homolog 1 (Kr-h1) in Harmonia axyridis (Coleoptera: Coccinellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:334-343. [PMID: 35020924 DOI: 10.1093/jee/toab252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Juvenile hormone (JH) plays a key role in regulating insect reproductive processes. Methoprene-tolerant (Met), as a putative JH receptor, transduces JH signals by activating the transcription factor krüppel homolog 1 (Kr-h1). To understand the effects of Met and Kr-h1 genes on female reproduction of natural enemy insects, the Met and Kr-h1 were identified and analyzed from Harmonia axyridis Pallas (HmMet and HmKr-h1). The HmMet protein belonged to the bHLH-PAS family with bHLH domain, PAS domains, and PAC domain. HmMet mRNA was detected in all developmental stages, and the highest expression was found in the ovaries of female adults. The HmKr-h1 protein had eight C2H2-type zinc finger domains. HmKr-h1 mRNA was highly expressed from day 7 to day 9 of female adults. The tissue expression showed that HmKr-h1 was highly expressed in its wing, leg, and fat body. Knockdown of HmMet and HmKr-h1 substantially reduced the transcription of HmVg1 and HmVg2, inhibited yolk protein deposition, and reduced fecundity using RNA interference. In addition, the preoviposition period was significantly prolonged after dsMet-injection, but there was no significant difference after dsKr-h1-silencing. However, the effect on hatchability results was the opposite. Therefore, we infer that both HmMet and HmKr-h1 are involved in female reproduction of H. axyridis, and their specific functions are different in certain physiological processes. In several continents, H. axyridis are not only beneficial insects, but also invasive pests. This report will provide basis for applying or controlling the H. axyridis.
Collapse
Affiliation(s)
- Hui Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - ZhaoYang Feng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - ShiPeng Han
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jie Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Laboratory of Plant Protection, Handan Academy of Agricultural Sciences, Handan, China
| | - Da Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - YunZhuan He
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Gao Q, Li B, Wei BX, Liu W, Wang P, Wang JL, Zhou XM, Wang XP. Juvenile hormone regulates photoperiod-mediated male reproductive diapause via the methoprene-tolerant gene in the ladybeetle Harmonia axyridis. INSECT SCIENCE 2022; 29:139-150. [PMID: 33843147 DOI: 10.1111/1744-7917.12918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Juvenile hormone (JH) absence induces photoperiod-mediated reproductive diapause, which is characterized by reproductive cessation. Although the role of methoprene-tolerant (Met)-mediated JH signaling in photoperiod-mediated female reproduction has been well documented, its role in male reproduction remains unclear. In this study, we investigated the role of JH in regulating photoperiod-mediated development of the male internal reproductive system (IRS) in the predatory ladybeetle Harmonia axyridis (Pallas). In a previous study, we found that adult male H. axyridis reared under either a short-day (SD) or long-day (LD) photoperiod had obvious differences in IRS development, but we were unable to identify the regulators of male reproductive diapause. In this study, we found that beetles reared under an SD photoperiod had significantly lower JH titer and a relatively undeveloped male IRS compared with those reared under an LD photoperiod. Additionally, application of the JH analog (JHA) methoprene promoted IRS development. Furthermore, Met knockdown strongly blocked JH signaling in males reared under the LD photoperiod, thereby slowing IRS development. Moreover, exogenous JHA did not reverse the suppressed development of the male IRS caused by Met knockdown. These results indicate that photoperiod regulates male IRS development in H. axyridis through a conserved Met-dependent JH signaling pathway.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bei Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing-Xin Wei
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pan Wang
- Department of Plant Protection, Wuhan Vegetable Research Institute, Wuhan, 430065, China
| | - Jia-Lu Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing-Miao Zhou
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Ma HY, Li YY, Li L, Tan Y, Pang BP. Juvenile hormone regulates the reproductive diapause through Methoprene-tolerant gene in Galeruca daurica. INSECT MOLECULAR BIOLOGY 2021; 30:446-458. [PMID: 33949026 DOI: 10.1111/imb.12710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Juvenile hormone (JH) signalling plays an important role in regulation of reproductive diapause in insects. However, its underlying molecular mechanism has been unclear. Methoprene-tolerant (Met), as a universal JH receptor, is involved in JH action. To gain some insight into its function in the reproductive diapause of Galeruca daurica, a serious pest on the Inner Mongolia grasslands undergoing obligatory summer diapause at the adult stage, we cloned the complete open-reading frame (ORF) sequences of Met and other 7 JH signalling-related genes, including JH acid methyltransferase (JHAMT), JH esterase (JHE), JH epoxide hydrolase (JHEH), Krüppel homologue 1 (Kr-h1), vitellogenin (Vg), forkhead box O (FOXO) and fatty acid synthase 2 (FAS2), from this species. GdMet encoded a putative protein, which contained three domains typical of the bHLH-PAS family. Expression patterns of these eight genes were developmentally regulated during adult development. Topical application of JH analogue (JHA) methoprene into the 3-day-old and 5-day-old adults induced the expression of GdMet. Silencing GdMet by RNAi inhibited the expression of JHBP, JHE, Kr-h1 and Vg, whereas promoted the FAS2 expression, which enhanced lipid accumulation and fat body development, and finally induced the adults into diapause ahead. Combining with our previous results, we conclude that JH may regulate reproductive diapause through a conserved Met-dependent pathway in G. daurica.
Collapse
Affiliation(s)
- H-Y Ma
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Y-Y Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - L Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Y Tan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - B-P Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Regulation of Juvenile Hormone on Summer Diapause of Geleruca daurica and Its Pathway Analysis. INSECTS 2021; 12:insects12030237. [PMID: 33799822 PMCID: PMC8000908 DOI: 10.3390/insects12030237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Diapause is an arrestment state in development, and plays an important role in life history in insects. It has been thought that a lack in juvenile hormone (JH) results in reproductive diapause occurring at the adult stage. However, we do not fully know about the underlying molecular mechanism. In this study, we proved that the topical application of a JH analog methoprene caused the changes at the transcriptional levels of a great number of genes, inhibited lipid accumulation, and finally delayed the adults entering diapause. Therefore, JH signaling plays an important role in regulating reproductive diapause of G. daurica, a new pest with great outbreaks in Inner Mongolia. Abstract Juvenile hormone (JH) signaling plays an important role in regulation of reproductive diapause in insects. However, we have little understanding of the effect of JH on gene expression at the transcriptome level in diapause. Galeruca daurica is a new pest in the Inner Mongolia grasslands with obligatory summer diapause in the adult stage. Topical application of a JH analog methoprene at the pre-diapause stage delayed the adults entering diapause and inhibited lipid accumulation whereas it did not during diapause. Using Illumina sequencing technology and bioinformatics tools, 54 and 138 differentially expressed genes (DEGs) were detected at 1 and 2 d after treatment, respectively. The KEGG analysis showed that the DEGs were mainly enriched in the metabolism pathways. qRT-PCR analysis indicated that methoprene promoted the expression of genes encoding vitellogenin, fork head transcription factor and Krüppel homolog 1, whereas suppressed the expression of genes encoding juvenile hormone-binding protein, juvenile hormone esterase, juvenile hormone acid methyltransferase, juvenile hormone epoxide hydrolase and fatty acid synthase 2. These results indicate that JH signaling plays an important role in regulating reproductive diapause of G. daurica.
Collapse
|
10
|
Characterization of Two Small Heat Shock Protein Genes ( Hsp17.4 and Hs20.3) from Sitodiplosis mosellana, and Their Expression Regulation during Diapause. INSECTS 2021; 12:insects12020119. [PMID: 33572953 PMCID: PMC7911813 DOI: 10.3390/insects12020119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Small heat shock proteins (sHsps) play important roles in thermal adaptation of various organisms, and insect diapause. Sitodiplosis mosellana, a key pest of wheat worldwide, undergoes obligatory larval diapause in soil to survive adverse temperature extremes during hot summers and cold winters. The objectives of this study were to characterize two sHsp genes from S. mosellana (SmHsp17.4 and SmHsp20.3), and determine their expression in response to diapause, extreme high/low temperatures, or 20-hydroxyecdysone (20E) treatment. Expression of SmHsp17.4 was down-regulated upon entry into diapause, but up-regulated during the shift to post-diapause quiescence. In contrast, expression of SmHsp20.3 was not affected by entry into diapause, but was pronounced during summer and winter. Furthermore, transcripts of both SmHsps were highly responsive to heat (≥35 °C) and cold (≤−5 °C) during diapause, and topical application of 20E on diapausing larvae also induced SmHsp17.4 in a dose-dependent manner. Notably, the recombinant SmHsp17.4 and SmHsp20.3 exhibited significant molecular chaperone activity. In conclusion, SmHsp17.4 and SmHsp20.3 play essential roles in heat/cold adaptation, and 20E-mediated SmHsp17.4 was also likely involved in diapause termination. Results have improved our understanding of the molecular mechanism underlying diapause and related stress tolerance in S. mosellana. Abstract Sitodiplosis mosellana, a periodic but devastating wheat pest that escapes temperature extremes in summer and winter by undergoing obligatory diapause. To determine the roles of small heat shock proteins (sHsps) in diapause of S. mosellana, we characterized two sHsp genes, SmHsp17.4 and SmHsp20.3, from this species. Both SmHsps contained the conserved α-crystallin domain and the carboxy-terminal I/VXI/V motif of the sHsp family. SmHsp17.4 had one intron while SmHsp20.3 had none. Quantitative PCR revealed that SmHsp17.4 expression decreased after diapause initiation, but substantially increased during transition to post-diapause quiescence. In contrast, SmHsp20.3 expression was not affected by entry of diapause, but was clearly up-regulated during summer and winter. Short-term more severe heat-stress (≥35 °C) of over-summering larvae or cold-stress (≤−5 °C) of over-wintering larvae could stimulate higher expression of both genes, and SmHsp17.4 was more responsive to cold stress while SmHsp20.3 was more sensitive to heat stress. Notably, transcription of SmHsp17.4, but not SmHsp20.3, in diapausing larvae was inducible by 20-hydroxyecdysone (20E). Recombinant SmHsp17.4 and SmHsp20.3 proteins also displayed significant chaperone functionality. These findings suggest that both SmHsps play key roles in stress tolerance during diapause; and 20E-regulated SmHsp17.4 was also likely involved in diapause termination.
Collapse
|
11
|
Miao L, Zhang N, Jiang H, Dong F, Yang X, Xu X, Qian K, Meng X, Wang J. Involvement of Two Paralogous Methoprene-Tolerant Genes in the Regulation of Vitellogenin and Vitellogenin Receptor Expression in the Rice Stem Borer, Chilo suppressalis. Front Genet 2020; 11:609. [PMID: 32587605 PMCID: PMC7298100 DOI: 10.3389/fgene.2020.00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
Besides the function of preventing metamorphosis in insects, the juvenile hormone (JH) plays a role in female reproduction; however, the underlying mechanism is largely unknown. The methoprene-tolerant (Met) protein belongs to a family of basic helix-loop-helix–Per-Arnt-Sim (bHLH-PAS) transcription factors and functions as the JH intracellular receptor. In this study, two full length cDNAs encoding Met (CsMet1 and CsMet2) were isolated from the rice stem borer, Chilo suppressalis. Structural analysis revealed that both CsMet1 and CsMet2 exhibited typical bHLH, PAS-A, PAS-B, and PAC (PAS C terminal motif) domains. Comparative analysis of transcript level using reverse transcription-quantitative PCR (RT-qPCR) revealed that CsMet1 was predominant in almost all examined developmental stages and tissues. Treatment with methoprene in vivo induces the transcription of both CsMet1 and CsMet2. Notably, injection of dsCsMet1 and dsCsMet2 suppressed the expression levels of vitellogenin (CsVg) and Vg receptor (CsVgR). These findings revealed the potential JH signaling mechanism regulating C. suppressalis reproduction, and provided evidence that RNAi-mediated knockdown of Met holds great potential as a control strategy of C. suppressalis.
Collapse
Affiliation(s)
- Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fan Dong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|