1
|
Zheng X, Yuan J, Qian K, Tang Y, Wang J, Zhang Y, Feng J, Cao H, Xu B, Zhang Y, Liang P, Wu Q. Identification and RNAi-based function analysis of trehalase family genes in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2024; 80:2839-2850. [PMID: 38323792 DOI: 10.1002/ps.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Insects utilize trehalases (TREs) to regulate energy metabolism and chitin biosynthesis, which are essential for their growth, development, and reproduction. TREs can therefore be used as potential targets for future insecticide development. However, the roles of TREs in Frankliniella occidentalis (Pergande), a serious widespread agricultural pest, remain unclear. RESULTS Three TRE genes were identified in F. occidentalis and cloned, and their functions were then investigated via feeding RNA interference (RNAi) and virus-induced gene silencing (VIGS) assays. The results showed that silencing FoTRE1-1 or FoTRE1-2 significantly decreased expression levels of FoGFAT, FoPGM, FoUAP, and FoCHS, which are members of the chitin biosynthesis pathway. Silencing FoTRE1-1 or FoTRE2 significantly down-regulated FoPFK and FoPK, which are members of the energy metabolism pathway. These changes resulted in 2-fold decreases in glucose and glycogen content, 2-fold increases in trehalose content, and 1.5- to 2.0-fold decreases in chitinase activity. Furthermore, knocking down FoTRE1-1 or FoTRE1-2 resulted in deformed nymphs and pupae as a result of hindered molting. The VIGS assay for the three FoTREs revealed that FoTRE1-1 or FoTRE2 caused shortened ovarioles, and reduced egg-laying and hatching rates. CONCLUSION The results suggest that FoTRE1-1 and FoTRE1-2 play important roles in the growth and development of F. occidentalis, while FoTRE1-1 and FoTRE2 are essential for its reproduction. These three genes could be candidate targets for RNAi-based management and control of this destructive agricultural pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuming Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Xue D, Yang Y, Fang L, Wang S, Wu Y. Trehalose 6-phosphate synthase gene rdtps1 contributes to thermal acclimation in Rhyzopertha dominica. BMC Genomics 2024; 25:172. [PMID: 38350857 PMCID: PMC10863172 DOI: 10.1186/s12864-024-10028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The lesser grain borer (Rhyzopertha dominica), a worldwide primary pest of stored grain, causes serious economic losses and threatens stored food safety. R. dominica can respond to changes in temperature, especially the adaptability to heat. In this study, transcriptome analysis of R. dominica exposed to different temperatures was performed to elucidate differences in gene expression and the underling molecular mechanism. RESULTS Isoform-sequencing generated 17,721,200 raw reads and yielded 20,416 full-length transcripts. A total of 18,880 (92.48%) transcripts were annotated. We extracted RNA from R. dominica reared at 5 °C (cold stress), 15 °C (cold stress), 27 °C (ambient temperature) and 40 °C (heat stress) for RNA-seq. Compared to those of control insects reared at 27 °C, 119, 342, and 875 differentially expressed genes (DEGs) were identified at 5 °C, 15 °C, and 40 °C, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that pathways associated with "fatty acid metabolism", "fatty acid biosynthesis", "AMPK signaling pathway", "neuroactive ligand receptor interaction", and "longevity regulating pathway-multiple species" were significantly enriched. The functional annotation revealed that the genes encoding heat shock proteins (HSPs), fatty acid synthase (FAS), phospholipases (PLA), trehalose transporter (TPST), trehalose 6-phosphate synthase (TPS), and vitellogenin (Vg) were most likely involved in temperature regulation, which was also validated by RT-qPCR. Seven candidate genes (rdhsp1, rdfas1, rdpla1, rdtpst1, rdtps1, rdvg1, and rdP450) were silenced in the RNA interference (RNAi) assay. RNAi of each candidate gene suggested that inhibiting rdtps1 expression significantly decreased the trehalose level and survival rate of R. dominica at 40 °C. CONCLUSIONS These results indicated that trehalose contributes to the high temperature resistance of R. dominica. Our study elucidates the molecular mechanisms underlying heat tolerance and provides a potential target for the pest management in R. dominica.
Collapse
Affiliation(s)
- Dingrong Xue
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
| | - Yan Yang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- Henan Collaborative Innovation Center for Grain Storage Security, School of Food and Strategic Reserves, Henan University of Technology, 450001, Zhengzhou, China
| | - Liwei Fang
- Department of Microbiology and Immunology, University of Illinois Chicago, 60612, Chicago, USA
| | - Shibo Wang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Yi Wu
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China.
| |
Collapse
|
3
|
Wang L, Li Z, Yi T, Li G, Smagghe G, Jin D. Ecdysteroid Biosynthesis Halloween Gene Spook Plays an Important Role in the Oviposition Process of Spider Mite, Tetranychus urticae. Int J Mol Sci 2023; 24:14797. [PMID: 37834248 PMCID: PMC10573261 DOI: 10.3390/ijms241914797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Zhuo Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (L.W.); (Z.L.); (T.Y.); (G.S.)
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, China
| |
Collapse
|
4
|
Khashaveh A, An X, Shan S, Pang X, Li Y, Fu X, Zhang Y. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022; 114:110447. [PMID: 35963492 DOI: 10.1016/j.ygeno.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and contribute to numerous physiological processes. However, little is known about the functions of miRNAs in insect chemosensation. In this study, nine small RNA libraries were constructed and sequenced from the antennae of nymphs, adult males, and adult females of Apolygus lucorum. In total, 399 (275 known and 124 novel) miRNAs were identified. miR-7-5p_1 was the most abundant miRNA. Altogether, 69,708 target genes related to biogenesis, membrane, and binding activities were predicted. In particular, 15 miRNAs targeted 16 olfactory genes. Comparing the antennae of nymphs and adult males and females, 94 miRNAs were differentially expressed. Alternatively, a subset of differentially expressed miRNAs was verified by qPCR, supporting the reliability of the sequencing results. This study provides a global miRNA transcriptome for the antennae of A. lucorum and valuable information for further investigations of the functions of miRNAs in the regulation of chemosensation.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqian Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Fu
- School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Tan YA, Zhao XD, Zhao J, Zhu-Salzman K, Ji QQ, Xiao LB, Hao DJ. iTRAQ Proteomic Analysis of Interactions Between 20E and Phospholipase C in Apolygus lucorum (Meyer-Dür). Front Physiol 2022; 13:845087. [PMID: 35250643 PMCID: PMC8894726 DOI: 10.3389/fphys.2022.845087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphagous Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. Hormone 20-hydroxyecdysone (20E) regulates multiple insect development and physiology events. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes and related proteins that can be affected by PLC still remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblotting techniques were used to compare differentially expressed proteins (DEPs) in A. lucorum in response to the treatment of 20E and the PLC inhibitor U73122 as well as their combination. A total of 1,624 non-redundant proteins and 97, 248, 266 DEPs were identified in the 20E/control, U73122/control, and 20E + U73122/control groups, respectively. Only 8 DEPs, including pathogenesis-related protein 5-like, cuticle protein 19.8, trans-sialidase, larval cuticle protein A2B-like, cathepsin L1, hemolymph juvenile hormone-binding protein, ATP-dependent RNA helicase p62-like, and myosin-9 isoform X1, were detected in all three groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs were involved in diverse signaling pathways. The results were validated by immunoblotting, which highlighted the reliability of proteomics analysis. These findings provided novel insights into the function of PLC in 20E signaling pathway in A. lucorum.
Collapse
Affiliation(s)
- Yong-An Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu-Dong Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Qin-Qin Ji
- Taizhou Customs of the People’s Republic of China, Taizhou, China
| | - Liu-Bin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Liu-Bin Xiao,
| | - De-Jun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, China
- De-Jun Hao,
| |
Collapse
|
6
|
Hu K, Fu B, Wang C, Liu J, Tang Y, Zhang W, Zhu J, Li Y, Pan Q, Liu F. The role of 20E biosynthesis relative gene Shadow in the reproduction of the predatory mirid bug, Cyrtorhinus lividipennis (Hemiptera: Miridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21854. [PMID: 34783381 DOI: 10.1002/arch.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Cytorhinus lividipennis is a natural enemy of rice planthoppers and leafhoppers. Improving the fecundity of C. lividipennis will be helpful to improve its control effect on pests. However, little is known about the hormonal regulatory mechanism of reproduction in C. lividipennis. In the current study, we examined the role of 20-hydroxyecdysone (20E) biosynthesis relative gene Shadow in the reproduction of C. lividipennis. The complementary DNA sequence of ClSad is 2018 -bp in length with an open reading frame of 1398-bp encoding 465 amino acid residues. ClSad was readily detected in nymphal and adult stages, and highly expressed in the adult stage. ClSad was highly expressed in the midgut and ovaries of adult females. Moreover, RNA interference-mediated knockdown of ClSad reduced the 20E titers and ClVg transcript level, resulting in fewer fully developed eggs and a decrease in the number of eggs laid by dsSad-injected adult females within 15 days. These results suggest that ClSad plays a critical role in the reproduction of C. lividipennis. The present study provides insights into the molecular mechanism of the ClSad gene for the reproduction of C. lividipennis.
Collapse
Affiliation(s)
- Kui Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baobao Fu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuchu Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wendan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qinjian Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|