1
|
Mohan K, Kandasamy S, Rajarajeswaran J, Sundaram T, Bjeljac M, Surendran RP, Ganesan AR. Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. Int J Biol Macromol 2024; 280:135937. [PMID: 39313045 DOI: 10.1016/j.ijbiomac.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, India
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marko Bjeljac
- Institute for Plant Health, Laimburg Research Centre, 39040 Auer (Ora), Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | | | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
2
|
Gupta M, Kumar H, Debbarma A, Kaur S. Unraveling the abundance of vip3-type genes in Indian Bacillus thuringiensis across the agroclimatic landscape and impact of amino acid substitutions for safer agriculture. Gene 2024; 933:148953. [PMID: 39299531 DOI: 10.1016/j.gene.2024.148953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Vegetative insecticidal protein (vip) genes of Bacillus thuringiensis (Bt) are candidates for gene pyramiding in the resistance management of pests. The prevalence of vip genes in Bt isolates is relatively under-explored. Bt isolates recovered from 29 diverse sources in nine agro-climatic zones of India were screened for the presence of vip3-type genes by PCR with 4 sets of oligonucleotide primers. Out of 155 Bt isolates, 70.32 % (109) and 44.52 % (69) isolates were positive for amplification of partial vip3-type genes with primer sets 1 and 4, respectively. The primer set-2 was found to be more efficient for amplifying full-length genes (29.03 % /45 isolates) as compared with primer set-3 (3.23 %/ 5 isolates), also corroborated in the amplification of full-length vip3 genes in ten Bt BGSC strains used as reference. Frequency analysis revealed presence of vip3 genes in Bt isolates across all agro-climatic zones. Thus, Indian Bt isolates from diverse sources have a rich repertoire of vip3-type genes. Our study reports the highest number (45) of full-length vip3-type genes detected in a native Bt isolates collection, demonstrating enrichment of Indian Bt isolates for vip3 genes. Twelve of these genes have been cloned, sequenced, and out of these, six were found to be effective against Helicoverpa armigera in our laboratory previously. Comparison of substitutions in deduced amino acids sequence of these genes and expression of Vip3 proteins in SDS-PAGE analysis of selected native Bt isolates positive for full-length vip3-type genes indicated their biopesticidal potential.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi 110012, India; ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab 141004, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab 151203, India
| | - Ashika Debbarma
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi 110012, India
| | - Sarvjeet Kaur
- ICAR-National Institute of Plant Biotechnology, PUSA Campus, New Delhi 110012, India.
| |
Collapse
|
3
|
Messéan A, Álvarez F, Devos Y, Camargo AM. Assessment of the 2022 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2024; 22:e8986. [PMID: 39175623 PMCID: PMC11340014 DOI: 10.2903/j.efsa.2024.8986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Following a request from the European Commission, the European Food Safety Authority (EFSA) assessed the 2022 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Overall, the 2022 PMEM report provides no evidence of adverse effects of maize MON 810 cultivation. It shows a high level of compliance with refuge requirements by Spanish and Portuguese farmers growing maize MON 810, but uncertainty remains on compliance in areas where the clustered surface of maize MON 810 farms exceeds 5 ha. There are no signs of practical resistance to Cry1Ab in the field in corn borer populations collected in north-eastern Spain in 2022, although a decrease in Cry1Ab susceptibility in Mediterranean corn borer populations from this area cannot be excluded. Information retrieved through farmer questionnaires in Spain and from the scientific literature reveals no unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Uncertainties remain on whether 'very highly' and 'extremely' sensitive non-target lepidoptera are potentially exposed to harmful amounts of MON 810 pollen. EFSA notes that several recommendations made in the frame of the assessment of previous PMEM reports remain unaddressed and identified additional shortcomings in the 2022 PMEM report that require further consideration by the consent holder in future annual PMEM reports. Particularly, EFSA emphasises the urgent need to increase the sensitivity of the insect resistance monitoring strategy and implement mitigation measures to ensure that the exposure of non-target lepidoptera to maize MON 810 pollen is reduced to levels of no concern.
Collapse
|
4
|
Liu L, He W, Xu P, Wei W, Wang J, Liu K. Contribution of the transcription factor SfGATAe to Bt Cry toxin resistance in Spodoptera frugiperda through reduction of ABCC2 expression. Int J Biol Macromol 2024; 267:131459. [PMID: 38593893 DOI: 10.1016/j.ijbiomac.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.
Collapse
Affiliation(s)
- Leilei Liu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China.
| | - Wenfeng He
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peiwen Xu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wei
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Jintao Wang
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Liu X, Liu S, Bai S, He K, Zhang Y, Dong H, Zhang T, Wang Z. Toxicity of Cry- and Vip3Aa-Class Proteins and Their Interactions against Spodoptera frugiperda (Lepidoptera: Noctuidae). Toxins (Basel) 2024; 16:193. [PMID: 38668618 PMCID: PMC11053954 DOI: 10.3390/toxins16040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), is one of the most important insect pests affecting corn crops worldwide. Although planting transgenic corn expressing Bacillus thuringiensis (Bt) toxins has been approved as being effective against FAW, its populations' resistance to Bt crops has emerged in different locations around the world. Therefore, it is important to understand the interaction between different Bt proteins, thereby delaying the development of resistance. In this study, we performed diet-overlay bioassays to evaluate the toxicity of Cry1Ab, Cry1Ac, Cry1B, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, Vip3Aa11, Vip3Aa19, and Vip3Aa20, as well as the interaction between Cry1Ab-, Cry1F-, Cry2Ab-, and Vip3Aa-class proteins against FAW. According to our results, the LC50 values of Bt proteins varied from 12.62 ng/cm2 to >9000 ng/cm2 (protein/diet), among which the Vip3Aa class had the best insecticidal effect. The combination of Cry1Ab and Vip3Aa11 exhibited additive effects at a 5:1 ratio. Cry1F and Vip3Aa11 combinations exhibited additive effects at 1:1, 1:2, and 5:1 ratios. The combination of Cry1F and Vip3Aa19 showed an antagonistic effect when the ratio was 1:1 and an additive effect when the ratio was 1:2, 2:1, 1:5, and 5:1. Additionally, the combinations of Cry1F and Vip3Aa20 showed antagonistic effects at 1:2 and 5:1 ratios and additive effects at 1:1 and 2:1 ratios. In addition to the above combinations, which had additive or antagonistic effects, other combinations exhibited synergistic effects, with variations in synergistic factors (SFs). These results can be applied to the establishment of new pyramided transgenic crops with suitable candidates, providing a basis for FAW control and resistance management strategies.
Collapse
Affiliation(s)
- Xiaobei Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China; (X.L.); (H.D.)
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| | - Shen Liu
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| | - Yongjun Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China; (X.L.); (H.D.)
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (S.B.); (K.H.); (Y.Z.)
| |
Collapse
|
6
|
Zhang Z, Yang X, Wang W, Wu K. Insecticidal Effects of Transgenic Maize Bt-Cry1Ab, Bt-Vip3Aa, and Bt-Cry1Ab+Vip3Aa against the Oriental Armyworm, Mythimna separata (Walker) in Southwest China. Toxins (Basel) 2024; 16:134. [PMID: 38535800 PMCID: PMC10974810 DOI: 10.3390/toxins16030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024] Open
Abstract
The oriental armyworm, Mythimna separata (Walker), an important migratory pest of maize and wheat, is posing a severe threat to maize production in Asian countries. As source areas of spring-summer emigratory populations, the control of M. separata in southwestern China is of great significance for East Asian maize production. To assess the toxicity of Bt maize against the pest, bioassays of Bt-(Cry1Ab+Vip3Aa) maize (event DBN3601T), Bt-Cry1Ab maize (event DBN9936), and Bt-Vip3Aa maize (event DBN9501) were conducted in Yunnan province of southwest China. There were significant differences in insecticidal activity between the three Bt maize events, and DBN3601T presented the highest insecticidal role. The results also indicated that the insecticidal effect of various Bt maize tissues took an order in leaf > kernel > silk, which is highly consistent with the expression amounts of Bt insecticidal protein in leaf (69.69 ± 1.18 μg/g), kernel (11.69 ± 0.75 μg/g), and silk (7.32 ± 0.31 μg/g). In field trials, all larval population densities, plant damage rates, and leaf damage levels of DBN3601T maize were significantly lower than the conventional maize. This research indicated that the DBN3601T event had a high control efficiency against M. separata and could be deployed in southwest China for the management of M. separata.
Collapse
Affiliation(s)
- Zhenghao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
| | - Wenhui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Y.); (W.W.)
| |
Collapse
|
7
|
Zheng Q, Wu J, Yan W, Zhu S, Miao X, Wang R, Huang S, Cheng D, Zhang P, Zhang Z. Green synthesis of a chlorfenapyr chitosan nanopesticide for maize root application: Reducing environmental pollution and risks to nontarget organisms. Int J Biol Macromol 2023; 253:126988. [PMID: 37729980 DOI: 10.1016/j.ijbiomac.2023.126988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Chlorfenapyr (CHL) is a pyrrole insecticide with a novel structure that is used to control resistant pests. However, its weak systemic activity limits its application to crop roots. Herein, a novel CHL formulation with improved effective utilization rates and suitability for root application is developed to avoid or reduce contamination caused by pesticide spraying. Accordingly, we prepared CHL@CS/CMCS nanoparticle (NP) suspensions with a particle size of approximately 100 nm using chitosan (CS) and carboxymethyl chitosan (CMCS). These suspensions exhibited better thermal stability, adhesion, permeability and systemic activity than a CHL suspension concentrate (CHL-SC). The nanoformulation deposition rate on maize leaves after spraying was 12.28 mg/kg, significantly higher than that of CHL-SC. The nanosuspension was effectively absorbed and transported by roots after irrigation and was suitable for root application. The efficacy was 89.46-92.36 % against Spodoptera frugiperda at 7 d, 7.5-17.5 times higher than that of CHL-SC. Furthermore, the CHL@CS/CMCS nanosuspension was safer for earthworms. These results suggest that chitosan-based nanoformulations improve the efficacy, utilization efficiency and active period of CHL control, providing a new approach for CHL application, reducing pollutant dispersal and the environmental impacts of pesticide application and facilitating sustainable agricultural production.
Collapse
Affiliation(s)
- Qun Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jiyingzi Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Wenjuan Yan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Ruifei Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Messéan A, Álvarez F, Devos Y, Camargo AM. Assessment of the 2021 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2023; 21:e8411. [PMID: 38075629 PMCID: PMC10699111 DOI: 10.2903/j.efsa.2023.8411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Following a request from the European Commission, the European Food Safety Authority (EFSA) assessed the 2021 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Evidence provided in the PMEM report shows that farmers growing maize MON 810 in Spain complied partially with refuge requirements, while full compliance was achieved in Portugal. Cry1Ab susceptibility tests performed on European and Mediterranean corn borer populations collected from north-eastern Spain in 2021 indicated no symptoms of resistance evolution to maize MON 810. However, unexpected damage to maize MON 810 plants was observed in a field trial in the province of Girona (north-eastern Spain), which may point to the presence of resistance alleles in this region. Information retrieved through farmer questionnaires and the scientific literature reveals no unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Overall, EFSA concludes that the evidence reported in the 2021 PMEM report does not invalidate its previous conclusions on the safety of maize MON 810. The possible presence of Cry1Ab resistance alleles at frequencies leading to damage to maize MON 810 plants in Girona requires twofold actions: (1) increase monitoring efforts in this area; and (2) implement remedial measures to limit the suspected evolution and spread of resistance. As in previous years, EFSA identified shortcomings on resistance monitoring that need revision. In particular, full refuge compliance must be achieved in Spain. Moreover, the sensitivity of the monitoring plan must be increased, which can be achieved by replacing the current susceptibility assays by periodic F2 screens. EFSA also recommends the consent holder to revise the farmer questionnaires to account for the emergence of teosinte as a noxious agricultural weed in maize MON 810-growing areas in Spain.
Collapse
|
9
|
Yuan G, Zeng C, Shi H, Yang Y, Du J, Zou C, Ma L, Pan G, Shen Y. Engineered Expression of Vip3A in Green Tissues as a Feasible Approach for the Control of Insect Pests in Maize. INSECTS 2023; 14:803. [PMID: 37887815 PMCID: PMC10607264 DOI: 10.3390/insects14100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023]
Abstract
Genetic engineering technology offers opportunities to improve many important agronomic traits in crops, including insect-resistance. However, genetically modified (GM) exogenous proteins in edible tissues of transgenic crops has become an issue of intense public concern. To advance the application of GM techniques in maize, a Cre/loxP-based strategy was developed for manipulating the transgenes in green tissues while locking them in non-green tissues. In the strategy, the site-specific excision can be used to switch on or off the expression of transgenes at specific tissues. In this work, two basic transgenic maize, named KEY, carrying the Cre gene, and LOCK, containing the Vip3A gene with a blocked element, were obtained based on their separate fusion gene cassettes. The expression level and concentration of Vip3A were observed with a high specific accumulation in the green tissues (leaf and stem), and only a small amount was observed in the root and kernel tissues in the KEY × LOCK hybrids. The insect resistance of transgenic maize against two common lepidopteran pests, Ostrinia furnacalis and Spodoptera frugiperda, was assessed in the laboratory and field. The results indicate that the hybrids possessed high resistance levels against the two pests, with mortality rates above 73.6% and damage scales below 2.4 compared with the control group. Our results suggest that the Cre/loxP-mediated genetic engineering approach has a competitive advantage in GM maize. Overall, the findings from this study are significant for providing a feasible strategy for transgenes avoiding expression in edible parts and exploring novel techniques toward the biosafety of GM plants.
Collapse
Affiliation(s)
- Guangsheng Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | | | | | | | | | | | | | | | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region of Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Huang F, Niu Y, Silva T, Brown S, Towles T, Kerns D, Jurat-Fuentes JL, Head GP, Carroll M, Walker W, Lin S. An Extended Investigation of Unexpected Helicoverpa zea (Boddie) Survival and Ear Injury on a Transgenic Maize Hybrid Expressing Cry1A/Cry2A/Vip3A Toxins. Toxins (Basel) 2023; 15:474. [PMID: 37505743 PMCID: PMC10467152 DOI: 10.3390/toxins15070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
The wide occurrence of resistance to Cry1A and Cry2A insecticidal toxins from Bacillus thuringiensis (Bt) in the corn earworm/bollworm Helicoverpa zea (Boddie) leaves the Vip3A toxin produced during the vegetative stage of Bt as the only fully active toxin expressed in transgenic crops to control H. zea in the U.S.A. During 2021, the first unexpected survival of H. zea and injury (UXI) on a maize hybrid expressing Cry1A.105, Cry2Ab2, and Vip3Aa in Louisiana, U.S.A. were observed in two sentinel plots used for resistance monitoring. A follow-up intensive investigation was conducted with two H. zea populations established from larvae collected from the two UXI plots. The main goal of this study was to reveal if the unexpected damage was due to resistance development in the insect to the Bt toxins expressed in the maize hybrid. Diet-overlay bioassays showed that the two populations were highly resistant to Cry1A.105, moderately resistant to Cry2Ab2, but still highly susceptible to Vip3Aa when compared to a reference susceptible strain. In 10 d assays with detached ears, the larvae of the two UXI populations exhibited survival on ears expressing only Cry toxins but presented near 100% mortality on maize hybrids containing both cry and vip3A transgenes. Multiple field trials over three years demonstrated that natural H. zea populations in Louisiana were highly resistant to maize expressing only Cry toxins but remained susceptible to all tested hybrids containing cry and vip3A genes. Altogether, the results of this study suggest that the observed UXIs in Louisiana were associated with a resistance to Cry toxins but were not due to a resistance to Vip3A. The possible causes of the UXIs are discussed. The results generated and procedures adopted in this study help in determining thresholds for defining UXIs, assessing resistance risks, and documenting field resistance.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| | - Ying Niu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| | - Tiago Silva
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| | - Sebe Brown
- Dean Lee Research & Extension Center, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA; (S.B.); (W.W.)
| | - Tyler Towles
- Macon Ridge Research Station, Louisiana State University Agricultural Center, Winnsboro, LA 71295, USA;
| | - Dawson Kerns
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (D.K.); (J.L.J.-F.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (D.K.); (J.L.J.-F.)
| | - Graham P. Head
- Bayer Crop Science, St. Louis, MO 63167, USA; (G.P.H.); (M.C.)
| | - Matthew Carroll
- Bayer Crop Science, St. Louis, MO 63167, USA; (G.P.H.); (M.C.)
| | - Wade Walker
- Dean Lee Research & Extension Center, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA; (S.B.); (W.W.)
| | - Shucong Lin
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (T.S.); (S.L.)
| |
Collapse
|
11
|
Guan F, Dai X, Hou B, Wu S, Yang Y, Lu Y, Wu K, Tabashnik BE, Wu Y. Refuges of conventional host plants counter dominant resistance of cotton bollworm to transgenic Bt cotton. iScience 2023; 26:106768. [PMID: 37216101 PMCID: PMC10196555 DOI: 10.1016/j.isci.2023.106768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Transgenic crops have revolutionized insect pest control, but evolution of resistance by pests threatens their continued success. The primary strategy for combating pest resistance to crops producing insecticidal proteins from Bacillus thuringiensis (Bt) uses refuges of non-Bt host plants to allow survival of susceptible insects. The prevailing paradigm is that refuges delay resistance that is rare and recessively inherited. However, we discovered refuges countered resistance to Bt cotton that was neither rare nor recessive. In a 15-year field study of the cotton bollworm, the frequency of a mutation conferring dominant resistance to Bt cotton surged 100-fold from 2006 to 2016 yet did not rise from 2016 to 2020. Computer simulations indicate the increased refuge percentage from 2016 to 2020 is sufficient to explain the observed halt in the evolution of resistance. The results also demonstrate the efficacy of a Bt crop can be sustained by non-Bt refuges of other crops.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Dai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bofeng Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yanhui Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Wen Z, Conville J, Matthews P, Hootman T, Himes J, Wong S, Huang F, Ni X, Chen JS, Bramlett M. More than 10 years after commercialization, Vip3A-expressing MIR162 remains highly efficacious in controlling major Lepidopteran maize pests: laboratory resistance selection versus field reality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105385. [PMID: 37105627 DOI: 10.1016/j.pestbp.2023.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
MIR162, a maize event that expresses Vip3Aa20 (Vip3A) approved for commercial cultivation around 2010, has been excellent for control of major Lepidopteran pests. However, development of fall armyworm (FAW) resistance to Vip3A is a serious concern. Resistant colonies selected in the laboratory can serve as valuable tools not only for better understanding of Vip3A's mode of action (MOA) and mechanism of resistance (MOR) but also for screening novel leads of new MOA that will help control FAW in case resistance to Vip3A in the field becomes a reality. We selected a Vip3A-resistant FAW strain, FAWVip3AR, by subjecting a FAW founder population containing field genetics to Vip3A exposure. FAWVip3AR had >9800-fold resistance to Vip3A by diet surface overlay bioassays and resistance was stable. Feeding bioassays using detached leaf tissues or whole plants indicated that FAWVip3AR larvae readily fed and completed the full life cycle on Vip3A-expressing MIR162 maize plants and leaf tissues that killed 100% of susceptible larvae. Yet, FAWVip3AR faced at least two challenges. First, FAWVip3AR suffered an apparent disadvantage (incomplete resistance) when feeding on MIR162 in comparison to FAWVip3AR feeding on Vip3A-free isoline AX5707 maize; and second, FAWVip3AR showed a fitness costs in comparison to a Vip3A-susceptible strain when both fed on AX5707. We also demonstrated that, >10 years after commercialization, MIR162 and Vip3A remain highly efficacious against field populations of three major Lepidopteran pests from different geographic locations and FAW strains resistant to other Bacillus thuringiensis (Bt) toxins that are currently on the market.
Collapse
Affiliation(s)
- Zhimou Wen
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - Jared Conville
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Phillip Matthews
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Travis Hootman
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Jo Himes
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Sarah Wong
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Fangneng Huang
- Department of Entomology, Louisianan State University AgCenter, Baton Rouge, LA 70803, USA
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA 31793, USA
| | - Jeng Shong Chen
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Matthew Bramlett
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
13
|
Smith EM, Shrestha RB, Gassmann AJ. Inheritance and Fitness Costs of Laboratory-Selected Resistance to Gpp34/Tpp35Ab1 Corn in Western Corn Rootworm (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:565-573. [PMID: 36799000 PMCID: PMC10483582 DOI: 10.1093/jee/toad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 05/30/2023]
Abstract
Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn and is currently managed with corn hybrids that produce insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt). Bt corn kills rootworm larvae and reduces larval feeding injury to corn roots. The Bt protein Gpp34/Tpp35Ab1, previously named Cry34/35Ab1, has been widely used in transgenic Bt corn for management of western corn rootworm, and field-evolved resistance has been found in some populations. In the United States, the refuge strategy is used to manage Bt resistance, with refuges of non-Bt host plants serving as a source of Bt-susceptible individuals, which in turn reduce the frequency of homozygous resistant individuals within a population. As such, the dominance of resistance strongly influences resistance evolution, with faster evolution of resistance when resistance is not recessive. Additionally, selection for resistance by a Bt crop leads to the accumulation of resistance alleles within refuge populations, thereby reducing the capacity of refuges to delay resistance. However, fitness costs can remove resistance alleles from refuge populations and preserve the dynamic of refuges producing Bt-susceptible genotypes. Bt-susceptible and Gpp34/Tpp35Ab1-resistant western corn rootworm were used to quantify the inheritance and fitness costs of resistance. We found that Gpp34/Tpp35Ab1 resistance was not recessive and had the accompanying fitness costs of slower developmental rate to adulthood and lower egg viability. This research will help improve insect resistance management by providing a better understanding of the risk of western corn rootworm evolving resistance to transgenic corn that produces Gpp34/Tpp35Ab1.
Collapse
Affiliation(s)
- Eliott M Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Ram B Shrestha
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Zhao S, Yang X, Liu D, Sun X, Li G, Wu K. Performance of the domestic Bt corn event expressing pyramided Cry1Ab and Vip3Aa19 against the invasive Spodoptera frugiperda (J. E. Smith) in China. PEST MANAGEMENT SCIENCE 2023; 79:1018-1029. [PMID: 36326028 DOI: 10.1002/ps.7273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The invasive fall armyworm, Spodoptera frugiperda (J.E. Smith), has caused serious corn yield losses and increased the frequency of insecticide spraying on corn in Africa and Asia. Drawing lessons from the use of Bt corn to manage fall armyworm in the Americas, China released a certificate for the genetically modified corn event DBN3601T pyramidally expressing Cry1Ab and Vip3Aa19 for industrialization in 2021. Performance of the DBN3601T event against invasive fall armyworm in China was evaluated by plant tissue-based bioassays and field trials during 2019-2021. RESULTS In the bioassays, tissues and organs of DBN3601T corn differed significantly in lethality to fall armyworm neonates in the order: leaf > husk > tassel and kernel > silk. In field trials, compared with non-Bt corn, DBN3601T corn greatly suppressed fall armyworm populations and damage; larval density, damage incidence, and leaf damage scores for DBN3601T corn were significantly lower than for non-Bt corn at different vegetative stages, and efficacy against larval populations during the 3 years ranged from 95.24% to 98.30%. CONCLUSION A laboratory bioassay and 3-year field trials confirmed that DBN3601T corn greatly suppressed fall armyworm populations and has high potential as a control of this invasive pest, making it a key tactic for integrated management of fall armyworm in China. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Yang F, Wang Z, Kerns DL. Resistance of Spodoptera frugiperda to Cry1, Cry2, and Vip3Aa Proteins in Bt Corn and Cotton in the Americas: Implications for the Rest of the World. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1752-1760. [PMID: 36515105 DOI: 10.1093/jee/toac099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 06/17/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is an economically important pest of corn, cotton, and soybean, and a major target of transgenic crops expressing Bacillus thuringiensis (Bt) proteins. In recent years, this insect has invaded most countries in Africa, Southeastern Asia, and Oceania, posing a great threat to food security. Successful use of Bt crops in the U.S. indicates that Bt technology can be an effective tool for management of S. frugiperda in other countries. Evolution of insect resistance is the primary threat to the long-term efficacy of Bt technology. There are many factors that may affect the rate of evolution of insect resistance to Bt crops, which include initial resistance allele frequency, the dose of Bt protein in Bt crops, cross-resistance, complete/incomplete resistance, and fitness costs associated with resistance. Currently, the high dose/refuge and gene-pyramiding approaches are the two main IRM strategies used in the U.S. to combat evolution of insect resistance. In this paper, we review research on resistance of S. frugiperda to Cry1, Cry2, and Vip3Aa proteins. Specifically, we discuss the resistance allele frequencies of S. frugiperda to these three proteins in the field, the genetic basis of resistance, the patterns of cross-resistance, and the fitness costs associated with resistance. Experience and knowledge gained from these studies provide valuable information for the successful use of Bt crop technology for control of S. frugiperda worldwide.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
eCry1Gb.1Ig, A Novel Chimeric Cry Protein with High Efficacy against Multiple Fall Armyworm ( Spodoptera frugiperda) Strains Resistant to Different GM Traits. Toxins (Basel) 2022; 14:toxins14120852. [PMID: 36548749 PMCID: PMC9785401 DOI: 10.3390/toxins14120852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is one of the most devastating insect pests to corn and soybean production in the Americas and is rapidly expanding its range worldwide. It is known to be hard to control either by chemical insecticide applications or by GM. Although the use of GM traits can be an effective way to control this pest, it is very rare to find native insecticidal proteins that provide the necessary level of FAW control in crop fields where FAW pressure and damage are high. Insecticidal Cry proteins sourced from Bacillus thuringiensis have been heavily utilized in the development of crops with GM traits; however, it is increasingly difficult to identify Cry proteins with unique modes of action. Protein engineering via a phylogenetically guided Cry protein domain swapping approach enabled us to discover novel chimeric Cry proteins engineered from inactive parent sequences. Some of these chimeras show excellent efficacy against key biotypes of FAW from Brazil and North America. In this study, we characterized a Cry-based chimera eCry1Gb.1Ig that is a very potent FAW toxin. eCry1Gb.1Ig showed high efficacy against multiple FAW strains that are resistant to various traits, including Cry1Fa, Vip3Aa and Cry1A.105/Cry2Ab. These results clearly indicate that the FAW strains resistant to Cry1Fa, Vip3Aa or Cry1A.105/Cry2Ab demonstrate no cross-resistance to eCry1Gb.1Ig and strongly suggest that eCry1Gb.1Ig acts through a novel mode of action compared to the existing traits. In addition to its FAW activity, eCry1Gb.1Ig has also been shown to control Chrysodeixis includens (soybean looper, SBL) and Anticarsia gemmatalis (velvetbean caterpillar, VBC), which are significant pests of soybean. When eCry1Gb.1Ig was introduced into corn and soybean crops, transgenic events showed strong efficacy against FAW, SBL and VBC, but no adverse plant phenotypes. This suggests that the in planta expression of the eCry1Gb.1Ig protein does not compromise plant growth or reproduction and can protect plants from FAW-related damage. Therefore, this valuable discovery will provide a differentiating FAW control trait that will give growers another tool to help them reduce yield loss due to FAW.
Collapse
|
17
|
de Oliveira WS, Sakuno CIR, Miraldo LL, Tavares MAGC, Komada KMA, Teresani D, Santos JLX, Huang F. Varied frequencies of resistance alleles to Cry1Ab and Cry1Ac among Brazilian populations of the sugarcane borer, Diatraea saccharalis (F.). PEST MANAGEMENT SCIENCE 2022; 78:5150-5163. [PMID: 36070208 DOI: 10.1002/ps.7133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Brazil is the largest grower of the world's 26 million ha of sugarcane, Saccharum officinarum. Pest damage mainly by the sugarcane borer, Diatraea saccharalis (F.), is a great challenge to the sugarcane industry. To control D. saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to two Bt sugarcane varieties: CTC20BT expressing Cry1Ab and CTC9001BT expressing Cry1Ac. Here we report the results of the first study related to Bt resistance in a sugarcane cropping system. RESULTS Larval survivorships of these families in an F2 screen on CTC20BT were highly correlated with their survival on CTC9001BT, whereas the Cry1Ac tissues exhibited greater insecticidal activities than Cry1Ab. Resistance allele frequencies (RAFs) for populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). CONCLUSIONS RAFs to Cry1Ab and Cry1Ac varied among Brazilian D. saccharalis populations. Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring, and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. MINI ABSTRACT To control Diatraea saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting in Brazil, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to Cry1Ab and Cry1Ac sugarcane plants Resistance allele frequencies (RAFs) for the populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for the São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of non-Bt maize refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that effective mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Chen L, Siddiqui JA, Ren X, Zhou S, Imran M, Assiri MA, Zalucki MP, Lou Y, Lu Y. Characterization of Indoxacarb Resistance in the Fall Armyworm: Selection, Inheritance, Cross-Resistance, Possible Biochemical Mechanisms, and Fitness Costs. BIOLOGY 2022; 11:biology11121718. [PMID: 36552228 PMCID: PMC9774702 DOI: 10.3390/biology11121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a voracious insect pest that is difficult to control due to resistance to insecticides and Bt proteins. We assessed cross-resistance, resistance mechanism, and fitness costs based on the life history traits of S. frugiperda. We established an S. frugiperda strain selected for resistance to indoxacarb (Ind-SEL) from a field-collected population and an unselected strain, Ind-UNSEL. Results indicated that after 24 generations of selection, the resistance to indoxacarb was increased by 472.67-fold as compared to the Ind-UNSEL. There was high cross-resistance to deltamethrin (31.23-fold) with very low or negligible cross-resistance to chlorantraniliprole, emamectin benzoate, and/or methoxyfenozide in the Ind-SEL population. Butoxide synergist increased susceptibility to indoxacarb, indicating that P450 enzymes may be involved in indoxacarb resistance. Significantly longer developmental time of larvae extended pupal duration, shorter adult longevity, and lower fecundity were observed in Ind-SEL as compared with the Ind-UNSEL population. The Net reproductive rate (R0) was the only growth parameter that differs between crosses of Ind-SEL♂ × Ind-UNSEL♀ (176 ± 46) and Ind-SEL♀ × Ind-UNSEL♂ (328 ± 57). On the other hand, all population growth parameters differ between Ind-SEL and Ind-UNSEL strains. Our work contributes to the growing body of research that demonstrates the importance of strain genetics in fitness cost experiments and helps resistance management programs make decisions.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100083, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.L.); (Y.L.)
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Y.L.); (Y.L.)
| |
Collapse
|
19
|
Kong XX, Tang R, Liao CM, Wang J, Dai K, Tang Z, Han RC, Jin YL, Cao L. A novel volatile deterrent from symbiotic bacteria of entomopathogenic nematodes fortifies field performances of nematodes against fall armyworm larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105286. [PMID: 36464339 DOI: 10.1016/j.pestbp.2022.105286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
The core elements of entomopathogenic nematode toxicity towards the fall armyworm Spodoptera frugiperda are associated with symbiotic bacteria. These microbes provide independent control effects and are reported to have repellency to insect pests. However, the ecological background of this nematode-bacteria-insect communication module is elusive. This work aims to identify key chemical cues which drive the trophic interactions through olfactory reception of S. frugiperda, and to inspire implementations with these isolated behavioral regulators in the corn field. A total of 657 volatiles were found within 13 symbiotic bacterial strains, and five of them induced significant electrophysiological responses of S. frugiperda larvae. 2-Hexynoic acid was demonstrated to exhibit a dominant role in deterring S. frugiperda larvae from feeding and localization. Field implementations with this novel volatile deterrent have resulted in fortified nematode applications. 2-Hexynoic acid acts as an excellent novel deterrent and presents remarkable application potential against fall armyworm larvae. Emissions from symbiotic bacteria of entomopathogenic nematodes are key players in chemical communication among insects, nematodes, and microbes. The olfactory perceptions and molecular targets for this volatile are worthy of future research.
Collapse
Affiliation(s)
- Xiang-Xin Kong
- Heilongjiang Bayi Agricultural University, Daqing 163319, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Can-Ming Liao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jie Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Kang Dai
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Zi Tang
- Huadu Agricultural Technology Management Centre, Guangzhou 510813, China
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yong-Ling Jin
- Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
20
|
A Molecular Marker to Identify Spodoptera frugiperda (JE Smith) DNA in Predators' Gut Content. INSECTS 2022; 13:insects13070635. [PMID: 35886810 PMCID: PMC9319052 DOI: 10.3390/insects13070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Simple Summary This work aimed to build a molecular marker to detect Spodoptera frugiperda DNA in predators’ gut content. The molecular marker developed is highly specific, and it was able to detect S. frugiperda DNA in the gut content of ladybug and earwig predators in field conditions. Our results confirm that generalist predators feed on S. frugiperda in maize fields, and they must be considered in IPM programs for S. frugiperda suppression. Abstract Spodoptera frugiperda is a serious pest of maize and other crops worldwide. The integration of control tactics is recommended for S. frugiperda suppression because reports of insecticide and Btplant-resistance are frequent. Biological control agents would be an alternative to improve S. frugiperda control in agricultural areas. We constructed a species-specific molecular marker to detect S. frugiperda DNA in predators’ gut content and estimated the predation rates of ladybugs and earwigs on S. frugiperda in maize crops. Predators were sampled in Pirassununga, São Paulo state, Brazil, in 2020 and 2021. Using the species-specific molecular marker in laboratory conditions, we estimated the half-life time to detect S. frugiperda DNA in the gut contents of Hippodamia convergens as 6.16 h and Doru luteipes as 25.72 h. The weekly predation rate of S. frugiperda by predators in maize crop varied from 0 to 42.1% by ladybugs and from 0 to 9.2% by D. luteipes. Predation events on S. frugiperda by predators were more frequent during the maize reproductive stage. Our results confirmed that predators might contribute to S. frugiperda suppression in maize fields. However, further studies of prey–predator interactions and agricultural landscapes are essential for a better understanding of predator dynamics in crops.
Collapse
|
21
|
Álvarez F, Martín Camargo A, Messéan A, Lenzi P, Streissl F. Assessment of the 2020 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2022; 20:e07406. [PMID: 35814921 PMCID: PMC9257797 DOI: 10.2903/j.efsa.2022.7406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission; the European Food Safety Authority (EFSA) assessed the 2020 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Like previous years, there was full compliance with refuge requirement in Portugal and partial compliance with refuge requirements by Spanish farmers growing MON 810 varieties. European and Mediterranean corn borer populations collected from north-eastern Spain during the 2020 maize growing season and tested for Cry1Ab susceptibility show no symptoms of resistance to maize MON 810. The assessment of farmer questionnaires and relevant scientific publications does not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Overall, EFSA concludes that the evidence reported in the 2020 PMEM report does not invalidate previous EFSA evaluations on the safety of maize MON 810. However, as in previous years, EFSA identifies shortcomings on resistance monitoring that need revision in future reports. In particular, the monitoring plan, as implemented in 2020, is not sufficiently sensitive to detect the recommended 3% resistance allele frequency. Consequently, EFSA strongly recommends the consent holder to achieve full compliance with refuge obligations in areas where adoption of maize MON 810 is high and increase the sensitivity of the monitoring plan by performing periodic F2-screens on corn borer populations from north-eastern Spain. EFSA recommends revising the farmer questionnaires when new characteristics of the receiving environment emerge which are relevant for the environmental risk assessment of MON 810 such as the emergence of teosinte. EFSA encourages the Competent authorities of concerned EU Member States, the consent holder and environmental networks to engage in a dialogue to develop a framework on how to best identify and report unexpected adverse effects from the cultivation of Bt maize varieties.
Collapse
|
22
|
Jiang NJ, Mo BT, Guo H, Yang J, Tang R, Wang CZ. Revisiting the sex pheromone of the fall armyworm Spodoptera frugiperda, a new invasive pest in South China. INSECT SCIENCE 2022; 29:865-878. [PMID: 34297483 DOI: 10.1111/1744-7917.12956] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
The fall armyworm Spodoptera frugiperda is a worldwide serious agricultural pest, and recently invaded South China. Sex pheromone can be employed to monitor its population dynamics accurately in the field. However, the pheromone components previously reported by testing different geographic populations and strains are not consistent. On the basis of confirming that the S. frugiperda population from Yunnan Province belonged to the corn strain, we analyzed the potential sex pheromone components in the pheromone gland extracts of females using gas chromatography coupled with electroantennographic detection (GC-EAD), gas chromatography coupled with mass spectrometry (GC-MS) and electroantennography (EAG). The results show that (Z)-9-tetradecenal acetate (Z9-14:Ac), (Z)-11-hexadecenyl acetate (Z11-16:Ac), (Z)-7-dodecenyl acetate (Z7-12:Ac) or (E)-7-dodecenyl acetate (E7-12:Ac) with a ratio of 100 : 15.8 : 3.9 induced EAD responses to varying degrees: Z9-14:Ac elicited a strong EAD response, Z7-12:Ac or E7-12:Ac elicited a small but clear EAD response, while Z11-16:Ac elicited a weak EAD response. Further single sensillum recording (SSR) showed that Z9-14:Ac and Z7-12:Ac induced dose-dependent activities in two types (A and B) of sensilla in male antennae, respectively, while the sensilla in response to E7-12:Ac and Z11-16:Ac was not recorded. Finally, wind tunnel tests reveal that Z9-14:Ac and Z7-12:Ac are two principal sex pheromone components of the tested population.
Collapse
Affiliation(s)
- Nan-Ji Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Oliveira NC, Phelan L, Labate CA, Cônsoli FL. Non-targeted metabolomics reveals differences in the gut metabolic profile of the fall armyworm strains when feeding different food sources. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104400. [PMID: 35598778 DOI: 10.1016/j.jinsphys.2022.104400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Spodoptera frugiperda (fall armyworm - FAW) is an important polyphagous agricultural pest feeding on nearly 350 host plants. FAW is undergoing incipient speciation with two well-characterized host-adapted strains, the "corn" (CS) and "rice" (RS) strains, which are morphologically identical but carry several genes under positive selection for host adaptation. We used non-targeted metabolomics based on gas chromatography/mass spectrometry to identify differences in metabolite profiles of the larval gut of CS and RS feeding on different host plants. Larvae were fed on artificial diet, maize, rice, or cotton leaves from eclosion to the sixth instar, when they had their midgut dissected for analysis. This study revealed that the midgut metabolome of FAW varied due to larval diet and differed between the FAW host-adapted strains. Additionally, we identified several candidate metabolites that may be involved in the adaptation of CS and RS to their host plants. Our findings provide clues toward the gut metabolic activities of the FAW strains.
Collapse
Affiliation(s)
- Nathalia C Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Larry Phelan
- Department of Entomology, OARDC, The Ohio State University, Wooster, OH, United States
| | - Carlos A Labate
- Multi-User Proteomics, Metabolomics and Lipidomics Laboratory, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando L Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
24
|
Van den Berg J, Greyvenstein B, du Plessis H. Insect resistance management facing African smallholder farmers under climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100894. [PMID: 35247642 DOI: 10.1016/j.cois.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Changes in climatic conditions affect pest populations and ultimately result in increased pest status and yield losses. While pesticide application is usually the first defensive tool used to control pest species that threaten crop production, genetically modified (GM) crops with insecticidal traits (Bt crops) are becoming more common. The indiscriminate and over use of insecticides, and absence of insect resistance management (IRM) strategies ultimately lead to evolution of resistance against these technologies. IRM faces significant challenges in the African context. In this paper we use examples of cotton, maize, cowpea and tomato pests to illustrate their potential to evolve resistance to insecticides and also highlight the importance of IRM strategies, both with regard to the use of pesticides and the cultivation of Bt cotton, Bt maize and Bt cowpea.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Bianca Greyvenstein
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Hannalene du Plessis
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
25
|
Franz L, Raming K, Nauen R. Recombinant Expression of ABCC2 Variants Confirms the Importance of Mutations in Extracellular Loop 4 for Cry1F Resistance in Fall Armyworm. Toxins (Basel) 2022; 14:toxins14020157. [PMID: 35202184 PMCID: PMC8878193 DOI: 10.3390/toxins14020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023] Open
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is a highly destructive and invasive global noctuid pest. Its control is based on insecticide applications and Bacillus thuringiensis (Bt) insecticidal Cry toxins expressed in transgenic crops, such as Cry1F in Bt corn. Continuous selection pressure has resulted in populations that are resistant to Bt corn, particularly in Brazil. FAW resistance to Cry1F was recently shown to be conferred by mutations of ATP-binding cassette transporter C2 (ABCC2), but several mutations, particularly indels in extracellular loop 4 (ECL4), are not yet functionally validated. We addressed this knowledge gap by baculovirus-free insect cell expression of ABCC2 variants (and ABCC3) by electroporation technology and tested their response to Cry1F, Cry1A.105 and Cry1Ab. We employed a SYTOXTM orange cell viability test measuring ABCC2-mediated Bt toxin pore formation. In total, we tested seven different FAW ABCC2 variants mutated in ECL4, two mutants modified in nucleotide binding domain (NBD) 2, including a deletion mutant lacking NBD2, and S. frugiperda ABCC3. All tested ECL4 mutations conferred high resistance to Cry1F, but much less to Cry1A.105 and Cry1Ab, whereas mutations in NBD2 hardly affected Bt toxin activity. Our study confirms the importance of indels in ECL4 for Cry1F resistance in S. frugiperda ABCC2.
Collapse
|
26
|
Bird L, Miles M, Quade A, Spafford H. Insecticide resistance in Australian Spodoptera frugiperda (J.E. Smith) and development of testing procedures for resistance surveillance. PLoS One 2022; 17:e0263677. [PMID: 35143580 PMCID: PMC8830740 DOI: 10.1371/journal.pone.0263677] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/25/2022] [Indexed: 01/08/2023] Open
Abstract
Spodoptera frugiperda (J.E. Smith) is a highly invasive noctuid pest first reported in northern Australia during early 2020. To document current status of resistance in S. frugiperda in Australia, insecticide toxicity was tested in field populations collected during the first year of establishment, between March 2020 and March 2021. Dose-response was measured by larval bioassay in 11 populations of S. frugiperda and a susceptible laboratory strain of Helicoverpa armigera. Emamectin benzoate was the most efficacious insecticide (LC50 0.023μg/ml) followed by chlorantraniliprole (LC50 0.055μg/ml), spinetoram (LC50 0.098μg/ml), spinosad (LC50 0.526μg/ml), and methoxyfenozide (1.413μg/ml). Indoxacarb was the least toxic selective insecticide on S. frugiperda (LC50 3.789μg/ml). Emamectin benzoate, chlorantraniliprole and methoxyfenozide were 2- to 7-fold less toxic on S. frugiperda compared with H. armigera while spinosyns were equally toxic on both species. Indoxacarb was 28-fold less toxic on S. frugiperda compared with H. armigera. There was decreased sensitivity to Group 1 insecticides and synthetic pyrethroids in S. frugiperda compared with H. armigera: toxicity was reduced up to 11-fold for methomyl, 56 to 199-fold for cyhalothrin, and 44 to 132-fold for alpha cypermethrin. Synergism bioassays with metabolic inhibitors suggest involvement of mixed function oxidase in pyrethroid resistance. Recommended diagnostic doses for emamectin benzoate, chlorantraniliprole, spinetoram, spinosad, methoxyfenozide and indoxacarb are 0.19, 1.0, 0.75, 6, 12 and 48μg/μl, respectively.
Collapse
Affiliation(s)
- Lisa Bird
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, New South Wales, Australia
| | - Melina Miles
- Queensland Department of Agriculture and Fisheries, Toowoomba, Queensland, Australia
| | - Adam Quade
- Queensland Department of Agriculture and Fisheries, Toowoomba, Queensland, Australia
| | - Helen Spafford
- Department of Primary Industries and Regional Development, Frank Wise Institute of Tropical Agriculture, Kununurra, Western Australia, Australia
| |
Collapse
|
27
|
Van den Berg J, Prasanna BM, Midega CAO, Ronald PC, Carrière Y, Tabashnik BE. Managing Fall Armyworm in Africa: Can Bt Maize Sustainably Improve Control? JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1934-1949. [PMID: 34505143 DOI: 10.1093/jee/toab161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/28/2023]
Abstract
The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi, 00601, Kenya
| | - Charles A O Midega
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
- Poverty and Health Integrated Solutions, Kisumu, 40141, Kenya
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
28
|
Dimase M, Brown S, Head GP, Price PA, Walker W, Yu W, Huang F. Performance of Bt-susceptible and -heterozygous dual-gene resistant genotypes of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in seed blends of non-Bt and pyramided Bt maize. INSECT SCIENCE 2021; 28:1147-1158. [PMID: 32662592 DOI: 10.1111/1744-7917.12850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 05/28/2023]
Abstract
A seed blend refuge has been implemented in the U.S. Corn Belt for Bt maize resistance management. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a target pest of Bt maize in the Americas. The larvae of this pest are mobile, which may affect the efficacy of seed blend refuges. In this study, field and greenhouse trials were conducted to determine the performance of Bt-susceptible (aabb) and -heterozygous dual-gene-resistant (AaBb) genotypes of S. frugiperda in seed blends of non-Bt and pyramided Bt maize. Three field trials evaluated larval survival, larval growth, and plant injury with aabb in seed blends of Bt maize expressing Cry1A.105/Cry2Ab2/Vip3A with 0-30% non-Bt seeds. Greenhouse tests investigated the performance of aabb and AaBb in seed blends of Cry1A.105/Cry2Ab2 with 0-30% non-Bt seeds. In pure non-Bt maize plots, after 9-13 d of neonates being released on the plants, 0.39 and 0.65 larvae/plant survived with leaf injury ratings of 4.7 and 5.9 (Davis's 1-9 scale) in the field and greenhouse, respectively. In contrast, live larvae and plant injury were virtually not observed on Bt plants across all planting patterns. Larval occurrence and plant injury by aabb on non-Bt plants were similar between seed blends and pure non-Bt plantings, suggesting that the blended refuges could provide an equivalent susceptible population as structured refuge under the test conditions. In the greenhouse, the two insect genotypes in seed blends performed similarly, indicating that the seed blends did not provide more favorable conditions for AaBb over aabb. The information generated from this study should be useful in managing S. frugiperda and evaluating if send blends could be suitable refuge options for Bt resistance management in the regions where the insect is a primary target pest.
Collapse
Affiliation(s)
- Marcelo Dimase
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Sebe Brown
- Dean Lee Research Station, Louisiana State University Agricultural Center, Alexandria, Louisiana, USA
| | | | | | - Wade Walker
- Macon Ridge Research Station, Louisiana State University Agricultural Center, Winnsboro, Louisiana, USA
| | - Wenbo Yu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
29
|
Álvarez F, Messéan A, Streissl F. Assessment of the 2019 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2021; 19:e06683. [PMID: 34257731 PMCID: PMC8261683 DOI: 10.2903/j.efsa.2021.6683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Following a request from the European Commission, the EFSA assessed the 2019 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Like previous years, there was full compliance with refuge requirement in Portugal and partial compliance with refuge requirements by Spanish farmers growing MON 810 varieties. European and Mediterranean corn borer populations collected from north-eastern Spain during the 2019 maize growing season and tested for Cry1Ab susceptibility show no symptoms of resistance to maize MON 810. The assessment of farmer questionnaires and relevant scientific publications does not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Overall, EFSA concludes that the evidence reported in the 2019 PMEM report does not invalidate previous EFSA evaluations on the safety of maize MON 810. However, as in previous years, EFSA identifies shortcomings on resistance monitoring that need revision in future reports. In particular, the monitoring plan, as implemented in 2019, is not sufficiently sensitive to detect the recommended 3% resistance allele frequency. Consequently, EFSA strongly recommends the consent holder to achieve full compliance with refuge obligations in areas where adoption of maize MON 810 is high and increase the sensitivity of the monitoring plan by performing periodic F2 screens on corn borer populations from north-eastern Spain. EFSA recommends revising the farmer questionnaires when new characteristics of the receiving environment emerge which are relevant for the environmental risk assessment of MON 810 such as the emergence of teosinte. EFSA encourages the Competent authorities of concerned EU Member States, the consent holder and environmental networks to engage in a dialogue to develop a framework on how to best identify and report unexpected adverse effects from the cultivation of Bt maize varieties.
Collapse
|
30
|
Yang P, Wang D, Guo W, Kang L. FAWMine: An integrated database and analysis platform for fall armyworm genomics. INSECT SCIENCE 2021; 28:590-601. [PMID: 33511767 DOI: 10.1111/1744-7917.12903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Fall armyworm (Spodoptera frugiperda), a native insect species in the Americas, is rapidly becoming a major agricultural pest worldwide and is causing great damage to corn, rice, soybeans, and other crops. To control this pest, scientists have accumulated a great deal of high-throughput data of fall armyworm, and nine versions of its genomes and transcriptomes have been published. However, easily accessing and performing integrated analysis of these omics data sets is challenging. Here, we developed the Fall Armyworm Genome Database (FAWMine, http://159.226.67.243:8080/fawmine/) to maintain genome sequences, structural and functional annotations, transcriptomes, co-expression, protein interactions, homologs, pathways, and single-nucleotide variations. FAWMine provides a powerful framework that helps users to perform flexible and customized searching, present integrated data sets using diverse visualization methods, output results tables in a range of file formats, analyze candidate gene lists using multiple widgets, and query data available in other InterMine systems. Additionally, stand-alone JBrowse and BLAST services are also established, allowing the users to visualize RNA-Seq data and search genome and annotated gene sequences. Altogether, FAWMine is a useful tool for querying, visualizing, and analyzing compiled data sets rapidly and efficiently. FAWMine will be continually updated to function as a community resource for fall armyworm genomics and pest control research.
Collapse
Affiliation(s)
- Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Depin Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Han Y, Taylor EB, Luthe D. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. J Chem Ecol 2021; 47:689-706. [PMID: 34056671 DOI: 10.1007/s10886-021-01284-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
A large percentage of crop loss is due to insect damage, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can degrade chitin in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. We also investigated the expression of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attack. The results indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinases retained activity inside the caterpillar midgut and enzymatic activity was detected in the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds implicated chitinase PRm3 found in Tx601 as a potential insecticidal protein.
Collapse
Affiliation(s)
- Yang Han
- The Pennsylvania State University, Plant Science, University Park, PA, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Dawn Luthe
- The Pennsylvania State University, Plant Science, University Park, PA, USA.
| |
Collapse
|
32
|
Yang L, Kaziem AE, Lin Y, Li C, Tan Y, Huang S, Cheng D, Xu H, Zhang Z. Carboxylated β-cyclodextrin anchored hollow mesoporous silica enhances insecticidal activity and reduces the toxicity of indoxacarb. Carbohydr Polym 2021; 266:118150. [PMID: 34044957 DOI: 10.1016/j.carbpol.2021.118150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
In this study, a pesticide controlled release system with dual response characteristics of pH and enzyme triggering was developed. Indoxacarb (IDC) was loaded into hollow mesoporous silica (HMS) nanoparticles, carboxylated β-cyclodextrin (β-CD) acted as a capping molecule to couple with the amino-functionalized HMS, and their well-defined morphological structures were confirmed by scanning electron microscopy and transmission electron microscopy. The results showed that the prepared IDC loaded HMS-CD had high loading efficiency (26.42%, w/w) and showed excellent dual response properties to pH and the α-amylase enzyme. IDC loaded HMS-CD nanoparticles showed better insecticidal activity against Spodoptera frugiperda than applying the same dose of IDC emulsifiable concentrate, and the toxicity of IDC loaded HMS-CD to zebrafish was reduced by more than 5-fold, indicating that insecticide delivery systems based on β-CD-anchored HMS nanoparticles could potentially be applied for sustainable control of pests and reduce harm to non-target organisms and the environment.
Collapse
Affiliation(s)
- Liupeng Yang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Amir E Kaziem
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Yigang Lin
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Chao Li
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Tan
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- Department of Environmental Agricultural Science, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Dongmei Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - HanHong Xu
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Niu Y, Oyediran I, Yu W, Lin S, Dimase M, Brown S, Reay-Jones FPF, Cook D, Reisig D, Thrash B, Ni X, Paula-Moraes SV, Zhang Y, Chen JS, Wen Z, Huang F. Populations of Helicoverpa zea (Boddie) in the Southeastern United States are Commonly Resistant to Cry1Ab, but Still Susceptible to Vip3Aa20 Expressed in MIR 162 Corn. Toxins (Basel) 2021; 13:63. [PMID: 33467562 PMCID: PMC7830782 DOI: 10.3390/toxins13010063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 01/12/2023] Open
Abstract
The corn earworm, Helicoverpa zea (Boddie), is a major pest targeted by pyramided Bacillus thuringiensis (Bt) corn and cotton in the U.S. Cry1Ab is one of the first insecticidal toxins used in Bt crops, while Vip3A is a relatively new toxin that has recently been incorporated into Cry corn with event MIR 162 and Cry cotton varieties to generate pyramided Bt traits targeting lepidopteran pests including H. zea. The objectives of this study were to determine the current status and distribution of the Cry1Ab resistance, and evaluate the susceptibility to Vip3Aa20 expressed in MIR 162 corn in H. zea in the southeastern U.S. During 2018 and 2019, 32 H. zea populations were collected from non-Bt corn (19 populations), Cry corn (12), and Cry/Vip3A cotton (1) across major corn areas in seven southeastern states of the U.S. Susceptibility of these populations to Cry1Ab and Vip3Aa20 was determined using diet-overlay bioassays. Compared to a known susceptible insect strain, 80% of the field populations were 13- to >150-fold resistant to Cry1Ab, while their response to Vip3Aa20 ranged from >11-fold more susceptible to 9-fold more tolerant. Mean susceptibility to each Bt toxin was not significantly different between the two groups of the populations collected from non-Bt and Bt crops, as well as between the two groups of the populations collected during 2018 and 2019. The results show that resistance to Cry1Ab in H. zea is widely distributed across the region. However, the Cry1Ab-resistant populations are not cross-resistant to Vip3Aa20, and H. zea in the region is still susceptible to the Vip3Aa20 toxin. Vip3Aa20 concentrations between 5 and 10 µg/cm2 may be used as diagnostic concentrations for susceptibility monitoring in future. Additional studies are necessary to elucidate the impact of the selection with Bt corn on resistance evolution in H. zea to Vip3A cotton in the U.S.
Collapse
Affiliation(s)
- Ying Niu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (W.Y.); (S.L.); (M.D.)
| | - Isaac Oyediran
- Syngenta Crop Protection LLC, Research Triangle Park, NC 27709, USA; (I.O.); (Y.Z.); (J.S.C.); (Z.W.)
| | - Wenbo Yu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (W.Y.); (S.L.); (M.D.)
| | - Shucong Lin
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (W.Y.); (S.L.); (M.D.)
| | - Marcelo Dimase
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (W.Y.); (S.L.); (M.D.)
| | - Sebe Brown
- Dean Lee Research Station, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA;
| | | | - Don Cook
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Dominic Reisig
- Vernon G. James Research and Extension Center, North Carolina State University, Plymouth, NC 27962, USA;
| | - Ben Thrash
- Lonoke Extension Center, University of Arkansas, Lonoke, AR 72086, USA;
| | - Xinzhi Ni
- Crop Genetics and Breeding Research, USDA-ARS, Tifton, GA 3173, USA;
| | - Silvana V. Paula-Moraes
- Entomology & Nematology Department, West Florida Research and Education Center, University of Florida, Jay, FL 32565, USA;
| | - Yan Zhang
- Syngenta Crop Protection LLC, Research Triangle Park, NC 27709, USA; (I.O.); (Y.Z.); (J.S.C.); (Z.W.)
| | - Jeng Shong Chen
- Syngenta Crop Protection LLC, Research Triangle Park, NC 27709, USA; (I.O.); (Y.Z.); (J.S.C.); (Z.W.)
| | - Zhimou Wen
- Syngenta Crop Protection LLC, Research Triangle Park, NC 27709, USA; (I.O.); (Y.Z.); (J.S.C.); (Z.W.)
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (Y.N.); (W.Y.); (S.L.); (M.D.)
| |
Collapse
|
34
|
Huang F. Dominance and fitness costs of insect resistance to genetically modified Bacillus thuringiensis crops. GM CROPS & FOOD 2021; 12:192-211. [PMID: 33380258 PMCID: PMC7781549 DOI: 10.1080/21645698.2020.1852065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Evolution of resistance to genetically modified Bacillus thuringiensis (Bt) crops in pest populations is a major threat to the sustainability of the technology. Incidents of field resistance that have led to control problems of Bt crops or significantly reduced susceptibility of individual Bt proteins in pyramided plants have increased dramatically across the world, especially in recent years. Analysis of globally published data showed that 61.5% and 60.0% of the cases of resistance with major alleles that allowed homozygous resistant genotypes to survival on Bt crops were functionally non-recessive and did not involve fitness costs, respectively. Dominance levels (DFLs) measured on Bt plants ranged from -0.02 to 1.56 with a mean (± sem) of 0.35 ± 0.13 for the 13 cases of single-gene resistance to Bt plants that have been evaluated. Among these, all six cases with field control problems were functionally non-recessive with a mean DFL of 0.63 ± 0.24, which was significantly greater than the DFL (0.11 ± 0.07) of the seven cases without field resistance. In addition, index of fitness costs (IFC) of major resistance was calculated for each case based on the fitness of resistant (R'R') and heterozygous (R'S') genotypes on non-Bt plants divided by the fitness of their susceptible (S'S') counterparts. The estimated IFCs for 15 cases of single-gene resistance were similar for R'R' and R'S', and for the cases with and without field resistance; and the values averaged 1.10 ± 0.12 for R'R' and 1.20 ± 0.18 for R'S'. Limited published data suggest that resistance of insects to dual/multiple-gene Bt crops is likely to be more recessive than the related single-gene resistance, but their IFCs are similar. The quantitative analysis of the global data documents that the prevalence of non-recessive resistance has played an essential role in the widespread evolution of resistance to Bt crops, while the lack of fitness costs is apparently not as critical as the non-recessive resistance. The results suggest that planting of 'high dose' traits is an effective method for Bt crop IRM and more comprehensive management strategies that are also effective for functionally non-recessive resistance should be deployed.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
35
|
Gutierrez-Moreno R, Mota-Sanchez D, Blanco CA, Chandrasena D, Difonzo C, Conner J, Head G, Berman K, Wise J. Susceptibility of Fall Armyworms ( Spodoptera frugiperda J.E.) from Mexico and Puerto Rico to Bt Proteins. INSECTS 2020; 11:E831. [PMID: 33255898 PMCID: PMC7760814 DOI: 10.3390/insects11120831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023]
Abstract
Fall armyworm is one of the main pests of conventional and Bacillus thuringiensis (Bt) corn in many countries in the Americas, Africa, Asia and in Australia. We conducted diet-overlay bioassays to determine the status of susceptibility to four Bt proteins (Cry1A.105, Cry2Ab2, Cry1F and Cry1Ac) in three different populations of fall armyworm from Mexico, and one population from Puerto Rico. Bioassays showed that fall armyworms from Puerto Rico were resistant to Cry1F with a resistance ratio 50 (RR50) higher than 10,000 ng/cm2 and to Cry1Ac with a RR50 = 12.2 ng/cm2, displaying the highest median lethal concentration (LC50) values to all Bt proteins tested. The effective concentration 50 (EC50) values further confirmed the loss of susceptibility to Cry1F and Cry1Ac in this population. However, LC50 and EC50 results with Cry1A.105 and Cry2Ab2 revealed that fall armyworm from Puerto Rico remained largely susceptible to these two proteins. The Mexican populations were highly susceptible to all the Bt proteins tested and displayed the lowest LC50 and EC50 values to all Bt proteins. Our results suggest that Cry1F and Cry1Ac resistance is stable in fall armyworm from Puerto Rico. However, this population remains susceptible to Cry1A.105 and Cry2Ab2. Results with Mexican fall armyworms suggest that possible deployment of Bt corn in Mexico will not be immediately challenged by Bt-resistant genes in those regions.
Collapse
Affiliation(s)
- Rebeca Gutierrez-Moreno
- Department of Entomology, Michigan State University, 1129 Farm Lane, East Lansing, MI 48824, USA; (R.G.-M.); (C.D.); (J.W.)
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, 1129 Farm Lane, East Lansing, MI 48824, USA; (R.G.-M.); (C.D.); (J.W.)
| | - Carlos A. Blanco
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | | | - Christina Difonzo
- Department of Entomology, Michigan State University, 1129 Farm Lane, East Lansing, MI 48824, USA; (R.G.-M.); (C.D.); (J.W.)
| | - Jeffrey Conner
- Department of Plant Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA;
| | - Graham Head
- Bayer U.S.-Crop Science, Chesterfield, MO 63017, USA; (G.H.); (K.B.)
| | - Kristina Berman
- Bayer U.S.-Crop Science, Chesterfield, MO 63017, USA; (G.H.); (K.B.)
| | - John Wise
- Department of Entomology, Michigan State University, 1129 Farm Lane, East Lansing, MI 48824, USA; (R.G.-M.); (C.D.); (J.W.)
| |
Collapse
|
36
|
Álvarez F, Georgiadis M, Messéan A, Streissl F. Assessment of the 2018 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2020; 18:e06245. [PMID: 33072192 PMCID: PMC7549383 DOI: 10.2903/j.efsa.2020.6245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Following a request from the European Commission, the EFSA assessed the 2018 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Like previous years, there was partial compliance with refuge requirements by Spanish farmers growing MON 810 varieties. European and Mediterranean corn borer populations collected from north-eastern Spain during the 2018 maize growing season and tested for Cry1Ab susceptibility show no symptoms of resistance to maize MON 810. The assessment of farmer questionnaires and relevant scientific publications does not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. The report does not provide information about the use of existing networks involved in environmental monitoring. Overall, EFSA concludes that the evidence reported in the 2018 PMEM report does not invalidate previous EFSA evaluations on the safety of maize MON 810. However, as in previous years, EFSA identifies shortcomings on resistance monitoring that need revision in future reports. In particular, the monitoring plan, as implemented in 2018, is not sufficiently sensitive to detect the recommended 3% resistance allele frequency. Consequently, EFSA strongly recommends the consent holder to: (1) achieve full compliance with refuge obligations in areas where adoption of maize MON 810 is high; (2) increase the sensitivity of the monitoring plan and address previously mentioned limitations for resistance monitoring; and (3) perform an F2 screen on corn borer populations from north-eastern Spain. A fit-for-purpose farmer alert system may help to detect unexpected adverse effects associated with the cultivation of MON 810 varieties and be an alternative to the current farmer survey system. Moreover, relevant stakeholders should implement a methodological framework to enable making the best use of existing networks involved in environmental monitoring for the general surveillance of genetically modified plants.
Collapse
|