1
|
Wang S, Li Y, Jiang K, Zhou J, Chen J, Liang J, Ndoni A, Xue H, Ye Z, Bu W. Identifying a potentially invasive population in the native range of a species: The enlightenment from the phylogeography of the yellow spotted stink bug, Erthesina fullo (Hemiptera: Pentatomidae). Mol Phylogenet Evol 2024; 195:108056. [PMID: 38493987 DOI: 10.1016/j.ympev.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
The yellow spotted stink bug (YSSB), Erthesina fullo (Thunberg, 1783) is an important Asian pest that has recently successfully invaded Europe and an excellent material for research on the initial stage of biological invasion. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of YSSB for the first time based on population genetic methods [using double digest restriction-site associated DNA (ddRAD) data and mitochondrial COI and CYTB] and ecological niche modelling. The results showed that four lineages (east, west, southwest, and Hainan Island) were established in the native range with a strong east-west differentiation phylogeographical structure, and the violent climate fluctuation might cause population divergence during the Middle and Upper Pleistocene. In addition, land bridges and monsoon promote dispersal and directional genetic exchanging between island populations and neighboring continental populations. The east lineage (EA) was identified as the source of invasion in Albania. EA had the widest geographical distribution among all other lineages, with a star-like haplotype network with the main haplotype as the core. It also had a rapid population expansion history, indicating that the source lineage might have stronger diffusion ability and adaptability. Our findings provided a significant biological basis for fine tracking of invasive source at the lineage or population level and promote early invasion warning of potential invasive species on a much subtler lineage level.
Collapse
Affiliation(s)
- Shujing Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yanfei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Kun Jiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, PR China
| | - Jiayue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Juhong Chen
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jingyu Liang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Li J, Shi L, Vasseur L, Zhao Q, Chen J, You M, You S. Genetic analyses reveal regional structure and demographic expansion of the predominant tea pest Empoasca onukii (Hemiptera: Cicadellidae) in China. PEST MANAGEMENT SCIENCE 2022; 78:2838-2850. [PMID: 35393736 DOI: 10.1002/ps.6908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The tea green leafhopper, Empoasca onukii Matsuda, is the most destructive insect pest of tea plantations in East Asia. Despite its economic importance and previous studies on this species, it remains unclear as to how this small-sized pest can have such wide range. RESULTS By sequencing three mitochondrial genes and 17 microsatellite loci, we revealed the regional structure and demographic expansion of 59 E. onukii populations in China. Bayesian analysis of population genetic structure (BAPS) on microsatellites identified four genetic groups with spatial discontinuities, while analysis on mitochondrial genes inferred five nested and differentiated clusters. Both the Mantel test and the generalized linear model indicated a significant pattern of isolation by geographic distance in E. onukii populations. Based on the approximate Bayesian computation approach, E. onukii was found to have originated from southwestern China and expanded northward and eastward. While MIGRATE-N and Bayesian stochastic search variable selection (BSSVS) procedure in BEAST confirmed the possible eastward and northward dispersal from Yunnan, they also detected more gene flow from the derived populations in central and southeastern China. CONCLUSION Our results suggest that the current distribution and structure of E. onukii is complicatedly influenced by human activities of cultivation, wide dissemination of tea in ancient China as well as recent transportation of tea seedlings for establishing new tea plantations. Insights into genetic differentiation and demographic expansion patterns from this study provide an important basis for the development of area-wide management of the E. onukii populations. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinyu Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Longqing Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | - Qian Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Jie Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
| |
Collapse
|
3
|
Liu T, Chen J, Jiang L, Qiao G. Human‐mediated eco‐evolutionary processes of the herbivorous insect
Hyalopterus arundiniformis
during the Holocene. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Tongyi Liu
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|