1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Wu DY, Han XZ, Li T, Sun BJ, Qin XY. How incubation temperature affects hatchling performance in reptiles: an integrative insight based on plasticity in metabolic enzyme. Curr Zool 2024; 70:195-203. [PMID: 38726248 PMCID: PMC11078047 DOI: 10.1093/cz/zoad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/29/2023] [Indexed: 05/12/2024] Open
Abstract
Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming. The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of oviparous species, but the physiological and biochemical basis of this developmental plasticity is largely unknown. In this study, we incubated eggs of the turtle Pelodiscus sinensis at low (24 °C), medium (28 °C), and high (32 °C) temperatures, and evaluated the effects of developmental temperature on offspring fitness, and metabolic enzymes in the neck and limb muscles of hatchlings. The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance (righting response and swimming capacity) and higher activities of metabolic enzymes (hexokinase, HK; lactate dehydrogenase, LDH) than hatchlings from the eggs incubated at high or low temperatures. In addition, the swimming speed and righting response were significantly correlated with the HK activities in limb (swimming speed) and neck (righting response) muscles, suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes. Integrating the fitness-related performance and the activities of metabolic enzymes, we predict that the P. sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32 °C.
Collapse
Affiliation(s)
- Dan-Yang Wu
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xing-Zhi Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Teng Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservational Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Yan Qin
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
3
|
Leibold DC, Gastelum JA, VandenBrooks JM, Telemeco RS. Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:739-745. [PMID: 35652426 DOI: 10.1002/jez.2630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of proteins and membranes interact hierarchically to determine thermal performance and limits. An untested prediction of the HMTL hypothesis is that behavioral anapyrexia (i.e., reduced body temperature in hypoxia) is exacerbated when metabolic demand is high. We tested this prediction by manipulating western fence lizards' (Sceloporus occidentalis) metabolic demand and oxygen environment, then measuring selected body temperatures. Lizards with elevated metabolic demand selected lower body temperatures at higher oxygen concentrations than resting lizards, but this occurred only at oxygen concentrations <12% O2 , suggesting thermal limits are unaffected by naturally-occurring oxygen variation. Given our results and the ubiquity of behavioral anapyrexia, the HMTL hypothesis may generally explain how oxygen and temperature interactively affect reptile performance.
Collapse
Affiliation(s)
- Dalton C Leibold
- Department of Biology, California State University Fresno, Fresno, California, USA
| | - Jacob A Gastelum
- Department of Biology, California State University Fresno, Fresno, California, USA
| | | | - Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, California, USA
| |
Collapse
|
4
|
Cui L, Yang C, Zhang D, Lin S, Zhao W, Liu P. Beneficial Effects of Warming Temperatures on Embryonic and Hatchling Development in a Low-Latitude Margin Population of the High-Latitude Lizard Lacerta agilis. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of warming temperatures on embryonic and hatchling development are critical for determining the vulnerability of species to climate warming. However, these effects have rarely been investigated in high-latitude oviparous species, particularly in their low-latitude margin populations. This study investigated the embryonic and hatchling development and fitness-related traits of a low-latitude margin population of a high-latitude lizard (Lacerta agilis). These traits were examined under present (24°C), moderate warming (27 and 30°C), and severe warming scenarios (33°C). Based on embryonic and hatchling responses to thermal variation, this study aimed to predict the vulnerability of the early life stages of low-latitude margin population of Lacerta agilis to climate warming. The incubation period of the low-latitude margin population of Lacerta agilis decreased as the temperature increased from 24 to 33°C. Hatching success was similar at 24, 27, and 30°C but decreased significantly at 33°C. No differences with temperature were observed for hatchling snout-vent length and hatchling body mass. The sprint speed was higher for hatchlings from temperatures of 24 and 33°C. The growth rate of hatchlings was highest at 30°C; however, the survival rate of hatchlings was not affected by the thermal environment. This study demonstrated that even for a low-latitude margin population of the high-latitude lizard, Lacerta agilis, moderate warming (i.e., 27 and 30°C) would benefit embryonic and hatchling development. This was indicated by the results showing higher hatching success, growth rate, and survival rate. However, if temperatures increase above 33°C, development and survival would be depressed significantly. Thus, low-latitude margin population of high-latitude species Lacerta agilis would benefit from climate warming in the near future but would be under stress if the nest temperature exceeded 30°C.
Collapse
|
5
|
Bodensteiner BL, Gangloff EJ, Kouyoumdjian L, Muñoz MM, Aubret F. Thermal-metabolic phenotypes of the lizard Podarcis muralis differ across elevation, but converge in high-elevation hypoxia. J Exp Biol 2021; 224:273727. [PMID: 34761802 DOI: 10.1242/jeb.243660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In response to a warming climate, many montane species are shifting upslope to track the emergence of preferred temperatures. Characterizing patterns of variation in metabolic, physiological and thermal traits along an elevational gradient, and the plastic potential of these traits, is necessary to understand current and future responses to abiotic constraints at high elevations, including limited oxygen availability. We performed a transplant experiment with the upslope-colonizing common wall lizard (Podarcis muralis) in which we measured nine aspects of thermal physiology and aerobic capacity in lizards from replicate low- (400 m above sea level, ASL) and high-elevation (1700 m ASL) populations. We first measured traits at their elevation of origin and then transplanted half of each group to extreme high elevation (2900 m ASL; above the current elevational range limit of this species), where oxygen availability is reduced by ∼25% relative to sea level. After 3 weeks of acclimation, we again measured these traits in both the transplanted and control groups. The multivariate thermal-metabolic phenotypes of lizards originating from different elevations differed clearly when measured at the elevation of origin. For example, high-elevation lizards are more heat tolerant than their low-elevation counterparts (counter-gradient variation). Yet, these phenotypes converged after exposure to reduced oxygen availability at extreme high elevation, suggesting limited plastic responses under this novel constraint. Our results suggest that high-elevation populations are well suited to their oxygen environments, but that plasticity in the thermal-metabolic phenotype does not pre-adapt these populations to colonize more hypoxic environments at higher elevations.
Collapse
Affiliation(s)
- Brooke L Bodensteiner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS - UMR 5321, 09200 Moulis, France.,Department of Biological Sciences, Ohio Wesleyan University, Delaware, 43015 OH, USA
| | - Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale du CNRS - UMR 5321, 09200 Moulis, France
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS - UMR 5321, 09200 Moulis, France.,School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
6
|
Watson CM, Cox CL. Elevation, oxygen, and the origins of viviparity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:457-469. [PMID: 34254734 DOI: 10.1002/jez.b.23072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Research focused on understanding the evolutionary factors that shape parity mode evolution among vertebrates have long focused on squamate reptiles (snakes and lizards), which contain all but one of the evolutionary transitions from oviparity to viviparity among extant amniotes. While most hypotheses have focused on the role of cool temperatures in favoring viviparity in thermoregulating snakes and lizards, there is a growing appreciation in the biogeographic literature for the importance of lower oxygen concentrations at high elevations for the evolution of parity mode. However, the physiological mechanisms underlying how hypoxia might reduce fitness, and how viviparity can alleviate this fitness decrement, has not been systematically evaluated. We qualitatively evaluated previous research on reproductive and developmental physiology, and found that (1) hypoxia can negatively affect fitness of squamate embryos, (2) oxygen availability in the circulatory system of adult lizards can be similar or greater than an egg, and (3) gravid females can possess adaptive phenotypic plasticity in response to hypoxia. These findings suggest that the impact of hypoxia on the development and physiology of oviparous and viviparous squamates would be a fruitful area of research for understanding the evolution of viviparity. To that end, we propose an integrative research program for studying hypoxia and the evolution of viviparity in squamates.
Collapse
Affiliation(s)
- Charles M Watson
- Department of Life Sciences, Texas A&M University San Antonio, San Antonio, Texas, USA
| | - Christian L Cox
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| |
Collapse
|
7
|
Jiang ZW, Ma L, Mi CR, Du WG. Effects of hypoxia on the thermal physiology of a high-elevation lizard: implications for upslope-shifting species. Biol Lett 2021; 17:20200873. [PMID: 33726564 DOI: 10.1098/rsbl.2020.0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai-Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.
Collapse
Affiliation(s)
- Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| |
Collapse
|
8
|
Souchet J, Bossu C, Darnet E, Le Chevalier H, Poignet M, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Mossoll-Torres M, Guillaume O, Clobert J, Barthe L, Pottier G, Philippe H, Gangloff EJ, Aubret F. High temperatures limit developmental resilience to high-elevation hypoxia in the snake Natrix maura (Squamata: Colubridae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Climate change is generating range shifts in many organisms, notably along the altitudinal gradient. However, moving up in altitude exposes organisms to lower oxygen availability, which may negatively affect development and fitness, especially at high temperatures. To test this possibility in a potentially upward-colonizing species, we artificially incubated developing embryos of the viperine snake Natrix maura Linnaeus 1758, using a split-clutch design, in conditions of extreme high elevation or low elevation at two ecologically-relevant incubation temperatures (24 and 32 °C). Embryos at low and extreme high elevations incubated at cool temperatures did not differ in development time, hatchling phenotype or locomotor performance. However, at the warmer incubation temperature and at extreme high elevation, hatching success was reduced. Further, embryonic heart rates were lower, incubation duration longer and juveniles born smaller. Nonetheless, snakes in this treatment were faster swimmers than siblings in other treatment groups, suggesting a developmental trade-off between size and performance. Constraints on development may be offset by the maintenance of important performance metrics, thus suggesting that early life-history stages will not prevent the successful colonization of high-elevation habitat even under the dual limitations of reduced oxygen and increased temperature.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Coralie Bossu
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Elodie Darnet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Hugo Le Chevalier
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Manon Poignet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR 5174 Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Olivier Calvez
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | | | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, 10 Torre Caldea 7º, Les Escaldes, Andorra
- Pirenalia, c/ de la rectoria, 2 Casa Cintet, Encamp, Andorra
| | - Olivier Guillaume
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Laurent Barthe
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
- Nature En Occitanie, 14 rue de Tivoli, Toulouse, France
| | | | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, QC, Canada
| | - Eric J Gangloff
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Department of Zoology, Ohio Wesleyan University, 61 Sandusky Street, Delaware, Ohio, USA
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA, Australia
| |
Collapse
|