1
|
Huang D, Ding H, Wang Y, Cheng G, Wang X, Leng T, Zhao H. Hair Follicle Transcriptome Analysis Reveals Differentially Expressed Genes That Regulate Wool Fiber Diameter in Angora Rabbits. BIOLOGY 2023; 12:biology12030445. [PMID: 36979137 PMCID: PMC10045444 DOI: 10.3390/biology12030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/15/2023]
Abstract
Wool fiber diameter (WFD) is an important index of wool traits and the main determinant of wool quality and value. However, the genetic determinants of fiber diameter have not yet been fully elucidated. Here, coarse and fine wool of Wan strain Angora rabbits and their hair follicle traits were characterized. The results indicated significant differences in the diameters of wool fibers and their hair follicles. The RNA sequencing (RNA-Seq) technique was used to identify differences in gene expression in hair follicles between coarse and fine wool. In total, 2574 differentially expressed genes (DEGs) were found between the two hair follicle groups. Transcription factors, keratin-associated protein (KAP) and keratin (KRT) families, and ECM-related genes may control the structure of fine fibers in rabbits. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that skin development, epidermal cell and keratinocyte differentiation, epithelium development, and Notch and ribosome signaling pathways were significantly enriched, respectively. GSEA further filtered six important pathways and related core genes. PPI analysis also mined functional DEGs associated with hair structure, including LEF1, FZD3, SMAD3, ITGB6, and BMP4. Our findings provide valuable information for researching the molecular mechanisms regulating wool fiber and could facilitate enhanced selection of super-fine wool rabbits through gene-assisted selection in the future.
Collapse
|
2
|
Li S, Li C, Chen L, Yang H, Ren X, Xu C, Wu B, Wang C, Ling Y, Shen Y, Lu H, Liu W, Zhou X. Comparative transcriptome analyses of immune responses to LPS in peripheral blood mononuclear cells from the giant panda, human, mouse, and monkey. Front Genet 2023; 13:1053655. [PMID: 36685921 PMCID: PMC9852843 DOI: 10.3389/fgene.2022.1053655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Gram-negative bacteria are major pathogens that can cause illnesses in giant pandas. Lipopolysaccharides (LPS), components of Gram-negative bacteria, can activate immune responses in mammals (i.e., humans and mice) through recognition by toll-like receptors (TLRs). However, the giant pandas' immune response to LPS stimulation and the differences between the giant panda and other mammals are not fully known. In this study, we administrated peripheral blood mononuclear cells (PBMCs) from giant pandas, humans, C57BL/6 mice, and rhesus monkeys by LPS treatment at 6 h followed by RNA sequencing (RNA-seq), respectively, with control of non-stimulation. KEGG analyses of differentially expressed genes (DEGs) pathways indicated that LPS could activate the classic signaling pathway of NF-κB in PBMCs from those four tested species. Thus, similar to the other three species, NF-κB is an LPS-responsive regulator of innate immune responses in giant pandas. Furthermore, the expression patterns of adapter genes, inflammatory cytokine genes, chemokines, interferon genes, cytokine genes related to cell growth and development, costimulatory molecules, Th1/Th2 cytokine genes, Th17 cytokine genes, Th9, and Th22 cytokine genes were compared among giant pandas and three other species. Our data indicated that in addition to the similar expression patterns of certain genes among giant pandas and other species, the unique expression pattern response to LPS in giant pandas was also discovered. Furthermore, Th9, Th17, and Th22 cells might be involved in the response to LPS in giant pandas at this tested time point. This study reveals that LPS-induced immune responses have different sensitivities and response timelines in giant pandas compared with other mammals. This study facilitates further understanding of the role of the TLR signaling pathway and the immune system in giant pandas, which might be helpful for disease prevention and protection.
Collapse
Affiliation(s)
- Shun Li
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Lixiang Chen
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hua Yang
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaonan Ren
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chunhua Xu
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bin Wu
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chao Wang
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, The Third People’s Hospital of Shenzhen, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weiping Liu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, Sichuan, China
| | - Xiaohui Zhou
- Department of Animal Model, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lyu T, Yang X, Zhao C, Wang L, Zhou S, Shi L, Dong Y, Dou H, Zhang H. Comparative transcriptomics of high-altitude Vulpes and their low-altitude relatives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The harsh environment of Qinghai-Tibet Plateau (QTP) imposes strong selective stresses (e.g., hypoxia, high UV-radiation, and extreme temperature) to the native species, which have driven striking phenotypic and genetic adaptations. Although the mechanisms of high-altitude adaptation have been explored for many plateau species, how the phylogenetic background contributes to genetic adaption to high-altitude of Vulpes is largely unknown. In this study, we sequenced transcriptomic data across multiple tissues of two high-altitude Vulpes (Vulpes vulpes montana and Vulpes ferrilata) and their low-altitude relatives (Vulpes corsac and Vulpes lagopus) to search the genetic and gene expression changes caused by high-altitude environment. The results indicated that the positive selection genes (PSGs) identified by both high-altitude Vulpes are related to angiogenesis, suggesting that angiogenesis may be the result of convergent evolution of Vulpes in the face of hypoxic selection pressure. In addition, more PSGs were detected in V. ferrilata than in V. v. montana, which may be related to the longer adaptation time of V. ferrilata to plateau environment and thus more genetic changes. Besides, more PSGs associated with high-altitude adaptation were identified in V. ferrilata compared with V. v. montana, indicating that the longer the adaptation time to the high-altitude environment, the more genetic alterations of the species. Furthermore, the result of expression profiles revealed a tissue-specific pattern between Vulpes. We also observed that differential expressed genes in the high-altitude group exhibited species-specific expression patterns, revealed a convergent expression pattern of Vulpes in high-altitude environment. In general, our research provides a valuable transcriptomic resource for further studies, and expands our understanding of high-altitude adaptation within a phylogenetic context.
Collapse
|