1
|
Chen J, Li S, Lin Y, Toldrá F, Lu X. The role of coagulase-negative staphylococci on aroma generation of fermented sausage. Meat Sci 2025; 221:109730. [PMID: 39662119 DOI: 10.1016/j.meatsci.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Fermented sausages are popular meat products with many different varieties. The aroma of fermented sausages depends on the metabolic activities of microbiota, mainly involving lactic acid bacteria and catalase-positive cocci, the group of coagulase-negative staphylococci (CNS) in particular. Regarding staphylococci, this work elucidated their generation of aroma precursors from hydrolase, metabolic activities contributing to aroma development, antioxidant effects that improve aroma via preventing excessive lipid oxidation. The metabolic pathways of staphylococci that play a role in aroma formation involve carbohydrate fermentation, amino acid degradation, fatty acid β-oxidation, and esterase activities. Their antioxidant activities are associated with superoxidase dismutase and catalase activities, as well as the production of antioxidant peptides. Processing conditions may influence CNS communities and affect aroma characteristics of fermented sausages. Implementation of genome sequencing and editing to select and customize CNS with specific biosynthetic metabolic pathways was proposed forward, offering a great potential for enhancing aroma development during sausage fermentation.
Collapse
Affiliation(s)
- Juan Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610025, China; Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Shenmiao Li
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
2
|
SHIRASAWA H, NISHIYAMA C, HIRANO R, KOYANAGI T, OKUDA S, TAKAGI H, KURIHARA S. Isolation of the high polyamine-producing bacterium Staphylococcus epidermidis FB146 from fermented foods and identification of polyamine-related genes. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:24-33. [PMID: 36660601 PMCID: PMC9816048 DOI: 10.12938/bmfh.2022-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 01/22/2023]
Abstract
It has been reported that the intake of polyamines contributes to the extension of healthy life span in animals. Fermented foods contain high concentrations of polyamines thought to be derived from fermentation bacteria. This suggests that bacteria that produce high levels of polyamines could be isolated from fermented foods and utilized as a source of polyamines for human nutrition. In this study, Staphylococcus epidermidis FB146 was isolated from miso, a Japanese fermented bean paste, and found to have a high concentration of putrescine in its culture supernatant (452 μM). We analyzed the presence of polyamines in the culture supernatants and cells of the type strains of 21 representative Staphylococcus species in addition to S. epidermidis FB146, and only S. epidermidis FB146 showed high putrescine productivity. Furthermore, whole-genome sequencing of S. epidermidis FB146 was performed, and the ornithine decarboxylase gene (odc), which is involved in putrescine synthesis, and the putrescine:ornithine antiporter gene (potE), which is thought to contribute to the release of putrescine into the culture supernatant, were present on plasmid DNA harbored by S. epidermidis FB146.
Collapse
Affiliation(s)
- Hideto SHIRASAWA
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Chisato NISHIYAMA
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Rika HIRANO
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan,Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Takashi KOYANAGI
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shujiro OKUDA
- Medical AI Center, Niigata University School of Medicine,
2-5274 Gakkocho-dori, Chuo-ku, Niigata, Niigata 951-8514, Japan
| | - Hiroki TAKAGI
- Faculty of Bioresources and Environmental Science, Ishikawa
Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Shin KURIHARA
- Faculty of Biology-oriented Science and Technology, Kindai
University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan,*Corresponding author. Shin Kurihara (E-mail: )
| |
Collapse
|
3
|
Chen J, Zhang J, Yang Z, Niu Y, Cai Z, Wang J, Yin L, Lin Y, Lu X. Characterization of indigenous coagulase-negative staphylococci isolated from Chinese spontaneously fermented meat products. Microbiol Res 2022; 263:127160. [PMID: 35944356 DOI: 10.1016/j.micres.2022.127160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
Abstract
Technological, safety-related and volatile properties were analyzed in coagulase-negative staphylococci (CNS) isolates from Chinese spontaneously fermented meat products. A total of 107 CNS isolates were identified via 16 S rRNA sequencing, and the most recovered species were S. saprophyticus (53.3 %), S. edaphicus (12.1 %), and S. epidermidis (10.3 %). Among them, 58 CNS isolates belonging to 9 species were selected with higher activities of catalase, nitrate reductase, proteolysis, and lipolysis, as well as higher tolerance to stressful environmental conditions. Then, 7 CNS isolates belonging to 4 species were further selected based upon excellent technological characteristics, lack of hemolysis and antibiotic resistance, and a low production of biogenic amines. The volatile profiles of these 7 strains cultivated in pork broth was determined. S. casei No. 1 produced significant amounts of phenethyl alcohol, geraniol, and 3-methyl-butanol. S. xylosus No. 120 produced the highest amount of methyl ketones with the potential to provide dry-cured odor of fermented meats. The volatile profile was highly strain dependent. Several CNS identified in this study have the potential to be used as the starter cultures for fermented meat products.
Collapse
Affiliation(s)
- Juan Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China; Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Jingbin Zhang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Ziyao Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Ying Niu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jie Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Liguo Yin
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin, China
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China.
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada.
| |
Collapse
|
4
|
Assessment of Multi Fragment Melting Analysis System (MFMAS) for the Identification of Food-Borne Yeasts. Curr Microbiol 2018; 75:716-725. [DOI: 10.1007/s00284-018-1437-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/12/2018] [Indexed: 11/30/2022]
|
5
|
Kesmen Z, Özbekar E, Büyükkiraz M. Multifragment melting analysis of yeast species isolated from spoiled fruits. J Appl Microbiol 2018; 124:522-534. [DOI: 10.1111/jam.13645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Z. Kesmen
- Department of Food Engineering; Faculty of Engineering; Erciyes University; Kayseri Turkey
| | - E. Özbekar
- Department of Food Engineering; Faculty of Engineering; Erciyes University; Kayseri Turkey
| | - M.E. Büyükkiraz
- Department of Food Engineering; Faculty of Engineering; Erciyes University; Kayseri Turkey
| |
Collapse
|
6
|
Geniş B, Tuncer Y. Determination of antibiotic susceptibility and decarboxylase activity of coagulase-negativeStaphylococcusandMacrococcus caseolyticusstrains isolated from fermented Turkish sausage (sucuk). J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Burak Geniş
- Department of Food Engineering, Faculty of Engineering; Süleyman Demirel University; Isparta 32260 Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering; Süleyman Demirel University; Isparta 32260 Turkey
| |
Collapse
|
7
|
Application of high-resolution melting analysis for differentiation of spoilage yeasts. J Microbiol 2016; 54:618-625. [PMID: 27572511 DOI: 10.1007/s12275-016-6017-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/24/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
A new method based on high resolution melting (HRM) analysis was developed for the differentiation and classification of the yeast species that cause food spoilage. A total 134 strains belonging to 21 different yeast species were examined to evaluate the discriminative power of HRM analysis. Two different highly variable DNA regions on the 26 rRNA gene were targeted to produce the HRM profiles of each strain. HRM-based grouping was compared and confirmed by (GTG)5 rep-PCR fingerprinting analysis. All of the yeast species belonging to the genera Pichia, Candida, Kazachstania, Kluyveromyces, Debaryomyces, Dekkera, Saccharomyces, Torulaspora, Ustilago, and Yarrowia, which were produced as species-specific HRM profiles, allowed discrimination at species and/or strain level. The HRM analysis of both target regions provided successful discrimination that correlated with rep-PCR fingerprinting analysis. Consequently, the HRM analysis has the potential for use in the rapid and accurate classification and typing of yeast species isolated from different foods to determine their sources and routes as well as to prevent contamination.
Collapse
|
8
|
Parlapani FF, Kormas KA, Boziaris IS. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2386-2394. [PMID: 25312872 DOI: 10.1002/jsfa.6957] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/01/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sea bream fillets are one of the most important value-added products of the seafood market. Fresh seafood spoils mainly owing to bacterial action. In this study an exploration of initial and spoilage microbiota of sea bream fillets stored under air and commercial modified atmosphere packaging (MAP) at 0 and 5 °C was conducted by 16S rRNA gene sequence analysis of isolates grown on plates. Sensory evaluation and enumeration of total viable counts and spoilage microorganisms were also conducted to determine shelf life and bacterial growth respectively. RESULTS Different temperatures and atmospheres affected growth and synthesis of spoilage microbiota as well as shelf life. Shelf life under air at 0 and 5 °C was 14 and 5 days respectively, while under MAP it was 20 and 8 days respectively. Initial microbiota were dominated by Pseudomonas fluorescens, Psychrobacter and Macrococcus caseolyticus. Different temperatures and atmospheres affected the synthesis of spoilage microbiota. At the end of shelf life, different phylotypes of Pseudomonas closely related to Pseudomonas fragi were found to dominate in most cases, while Pseudomonas veronii dominated in fillets under MAP at 0 °C. Furthermore, in fillets under MAP at 5 °C, new dominant species such as Carnobacterium maltaromaticum, Carnobacterium divergens and Vagococcus fluvialis were revealed. CONCLUSION Different temperature and atmospheric conditions affected bacterial growth, shelf life and the synthesis of spoilage microbiota. Molecular identification revealed species and strains of microorganisms that have not been reported before for sea bream fillets stored under various conditions, thus providing valuable information regarding microbiological spoilage.
Collapse
Affiliation(s)
- Foteini F Parlapani
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Street, GR-38446 N. Ionia, Volos, Greece
| | - Konstantinos Ar Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Street, GR-38446 N. Ionia, Volos, Greece
| | - Ioannis S Boziaris
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Street, GR-38446 N. Ionia, Volos, Greece
| |
Collapse
|
9
|
Yetiman AE, Kesmen Z. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int J Food Microbiol 2015; 204:9-16. [PMID: 25828705 DOI: 10.1016/j.ijfoodmicro.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/24/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.
Collapse
Affiliation(s)
- Ahmet E Yetiman
- Erciyes University, Faculty of Engineering, Food Engineering Department, Kayseri, Turkey
| | - Zülal Kesmen
- Erciyes University, Faculty of Engineering, Food Engineering Department, Kayseri, Turkey.
| |
Collapse
|