1
|
Dai Y, Wei J, Feng W, Huang Y, Li H, Ma L, Chen X. Fabrication and characterization of tea seed starch-tea polyphenol complexes. Carbohydr Polym 2024; 346:122615. [PMID: 39245495 DOI: 10.1016/j.carbpol.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
This study investigates the complexation between tea seed starch (TSS) and tea polyphenols (TPs) at varying concentrations (2.5, 5.0, 7.5, and 10.0 %). The objectives can expand the knowledge of TSS, which is a novel starch, and to examine how TPs influence the structure and physicochemical properties of the complexes. Results indicate that TPs interact with TSS through hydrogen bonding, altering granule morphology and disrupting ordered structure of starch. Depending on the concentration, TPs induce either V-type or non-V-type crystal structures within TSS, which had bearing on iodine binding capacity, swelling, pasting, gelatinization, retrogradation, rheology, and gel structure. In vitro digestibility analysis reveals that TSS-TPs complexes tend to reduce readily digestible starch while increasing resistant starch fractions with higher TP concentrations. Thus, TSS-TPs complexes physicochemical and digestibility properties can be modulated, providing a wide range of potential applications in the food industry.
Collapse
Affiliation(s)
- Yihui Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiaru Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; State key laboratory of biocatalysis and enzyme engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yang Huang
- Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Hao Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Lixin Ma
- State key laboratory of biocatalysis and enzyme engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Wang Y, Zhao R, Liu W, Zhao R, Liu Q, Hu H. Effect of twin-screw extrusion pretreatment on starch structure, rheological properties and 3D printing accuracy of whole potato flour and its application in dysphagia diets. Int J Biol Macromol 2024; 278:134796. [PMID: 39217039 DOI: 10.1016/j.ijbiomac.2024.134796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Twin-screw extrusion pretreatment has great potential for the development of three-dimensional (3D) printed food as dysphagia diets. This study aimed to investigate the effect of twin-screw extrusion pretreatment on starch structure, rheological properties and 3D printing accuracy of whole potato flour and its application in dysphagia diets. The results indicated that twin-screw extrusion pretreatment was found to change chain length distributions, short-range ordered structure and relative crystallinity of whole potato flour (WPF), thereby improving its 3D printing performance. With the increasing proportion of long linear chains (DP > 12), the intensity of hydrogen bonds, linear viscoelastic region, storage modulus (G'), loss modulus (G″), viscosity and n of whole potato flour paste were increased, enhancing high printing accuracy and shape retention of 3D printed samples with a denser microstructure and smaller pore diameter distribution. The whole potato flour paste extruded with a peristaltic pump speed at 5.25 mL/min (WPF-4) displayed the highest printing accuracy with excellent rheological properties, good water distribution state and dense network structure, which classified as class 5 level dysphagia diets. This research provides an effective guidance for the modification of whole potato flour using twin-screw extrusion pretreatment as 3D printed food inks for dysphagia patients.
Collapse
Affiliation(s)
- Yingsa Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Ruixuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Renjie Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Integrated Laboratory of Potato Staple Food Processing Technology, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Storage, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
3
|
Niu J, Shang M, Li X, Sang S, Chen L, Long J, Jiao A, Ji H, Jin Z, Qiu C. Health benefits, mechanisms of interaction with food components, and delivery of tea polyphenols: a review. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37665600 DOI: 10.1080/10408398.2023.2253542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.
Collapse
Affiliation(s)
- Jingxian Niu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengshan Shang
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Long Chen
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Wei R, Qian L, Kayama K, Wu F, Su Z, Liu X. Cake of Japonica, Indica and glutinous rice: Effect of matcha powder on the volatile profiles, nutritional properties and optimal production parameters. Food Chem X 2023; 18:100657. [PMID: 37025417 PMCID: PMC10070511 DOI: 10.1016/j.fochx.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/12/2022] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Matcha addition decreased the relative crystallinity and provided with a refreshing flavor for all types of rice cakes. Matcha also significantly enhanced the phenolic content and the oxidant defense of cakes. Compared with the other two types of rice cakes, the one made of glutinous rice are with the lowest starch digestibility. Adding matcha to rice cakes inhibited the in vitro starch digestion, and a significant decrease in the expected glycemic index (eGI) and an increase in resistant starch (RS) were observed. Besides, according to the results of sensory evaluation, an optimized formulation of matcha rice cake was expected to contain 1.6% matcha, 82% water and steamed for 39 min. These findings suggest that matcha could be a favorable food additive to improve both the flavour and nutritional value of steamed rice cake.
Collapse
|
5
|
Ji S, Zeng Q, Xu M, Li Y, Xu T, Zhong Y, Liu Y, Wang F, Lu B. Investigation of the mechanism of different 3D printing performance of starch and whole flour gels from tuber crops. Int J Biol Macromol 2023; 241:124448. [PMID: 37060974 DOI: 10.1016/j.ijbiomac.2023.124448] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
This study aims to reveal the variation in 3D printing performance of whole flour and starch gels as derived from different varieties of tuber crops including cassava, potato, and yam, along with its mechanism. The whole flour of the same tuber crops showed a higher branching degree, average molecular weight (R¯h), and the proportion of AM chains for 100 < X ≤ 1000 than its starch. Due to the higher degree of branching, the crystallinity of whole flour reached a higher level. In this circumstance, G2' of the dispersion system decreased, which facilitated smooth extrusion of ink from the nozzle, thus improving the precision of printing for the final product. Besides, a higher R¯h and the percentage of AM chains for 100 < X ≤ 1000 made it easier for the material to extrude, thus enhancing the printing accuracy of the product. The higher short-range ordered structure of whole flour also enhanced the printing performance of 3D printed products. This research contributes an effective solution to the selection of starch and whole flour for food 3D printing.
Collapse
Affiliation(s)
- Shengyang Ji
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Qingxin Zeng
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Minghao Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ye Li
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Tao Xu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yongheng Zhong
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
6
|
Ngo TV, Kusumawardani S, Kunyanee K, Luangsakul N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022; 11:3384. [PMID: 36359996 PMCID: PMC9658643 DOI: 10.3390/foods11213384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
Health problems associated with excess calories, such as diabetes and obesity, have become serious public issues worldwide. Innovative methods are needed to reduce food caloric impact without negatively affecting sensory properties. The interaction between starch and phenolic compounds has presented a positive impact on health and has been applied to various aspects of food. In particular, an interaction between polyphenols and starch is widely found in food systems and may endow foods with several unique properties and functional effects. This review summarizes knowledge of the interaction between polyphenols and starch accumulated over the past decade. It discusses changes in the physicochemical properties, in vitro digestibility, prebiotic properties, and antioxidant activity of the starch-polyphenol complex. It also reviews innovative methods of obtaining the complexes and their applications in the food industry. For a brief description, phenolic compounds interact with starch through covalent or non-covalent bonds. The smoothness of starch granules disappears after complexation, while the crystalline structure either remains unchanged or forms a new structure and/or V-type complex. Polyphenols influence starch swelling power, solubility, pasting, and thermal properties; however, research remains limited regarding their effects on oil absorption and freeze-thaw stability. The interaction between starch and polyphenolic compounds could promote health and nutritional value by reducing starch digestion rate and enhancing bioavailability; as such, this review might provide a theoretical basis for the development of novel functional foods for the prevention and control of hyperglycemia. Further establishing a comprehensive understanding of starch-polyphenol complexes could improve their application in the food industry.
Collapse
Affiliation(s)
| | | | | | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
7
|
Walayat N, Wang X, Liu J, Nawaz A, Zhang Z, Khalifa I, Rincón Cervera MÁ, Pateiro M, Lorenzo JM, Nikoo M, Siddiqui SA. Kappa-carrageenan as an effective cryoprotectant on water mobility and functional properties of grass carp myofibrillar protein gel during frozen storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Schefer S, Oest M, Rohn S. Interactions between Phenolic Acids, Proteins, and Carbohydrates-Influence on Dough and Bread Properties. Foods 2021; 10:2798. [PMID: 34829079 PMCID: PMC8624349 DOI: 10.3390/foods10112798] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The understanding of interactions between proteins, carbohydrates, and phenolic compounds is becoming increasingly important in food science, as these interactions might significantly affect the functionality of foods. So far, research has focused predominantly on protein-phenolic or carbohydrate-phenolic interactions, separately, but these components might also form other combinations. In plant-based foods, all three components are highly abundant; phenolic acids are the most important phenolic compound subclass. However, their interactions and influences are not yet fully understood. Especially in cereal products, such as bread, being a nutritional basic in human nutrition, interactions of the mentioned compounds are possible and their characterization seems to be a worthwhile target, as the functionality of each of the components might be affected. This review presents the basics of such interactions, with special emphasis on ferulic acid, as the most abundant phenolic acid in nature, and tries to illustrate the possibility of ternary interactions with regard to dough and bread properties. One of the phenomena assigned to such interactions is so-called dry-baking, which is very often observed in rye bread.
Collapse
Affiliation(s)
- Simone Schefer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.S.); (M.O.)
| | - Marie Oest
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.S.); (M.O.)
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.S.); (M.O.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
9
|
Effect of polyphenolic compounds on starch retrogradation and in vitro starch digestibility of rice cakes under different storage temperatures. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09701-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Lv Y, Li M, Pan J, Zhang S, Jiang Y, Liu J, Zhu Y, Zhang H. Interactions between tea products and wheat starch during retrogradation. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chem 2019; 297:124992. [DOI: 10.1016/j.foodchem.2019.124992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
|
12
|
Chusak C, Ying JAY, Zhien JL, Pasukamonset P, Henry CJ, Ngamukote S, Adisakwattana S. Impact of Clitoria ternatea (butterfly pea) flower on in vitro starch digestibility, texture and sensory attributes of cooked rice using domestic cooking methods. Food Chem 2019; 295:646-652. [PMID: 31174808 DOI: 10.1016/j.foodchem.2019.05.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023]
Abstract
The effect of Clitoria ternatea flower (CTE) incorporated into cooked rice using domestic cooking methods on starch digestibility was determined. The incorporation of 1.25% and 2.5% (w/v) CTE caused a reduction in the starch digestibility of cooked rice using an electric rice cooker. In addition, there was significant alteration on the starch digestibility of cooked rice incorporated with 2.5% CTE using a microwave oven. Moreover, CTE significantly reduced the level of rapidly digestible starch and increased the level of undigested starch in cooked rice using an electric rice cooker. In the textural characteristics, the hardness of cooked rice with CTE remained unchanged, whereas a reduction in stickiness of cooked rice with CTE was observed. The sensory evaluation of cooked rice with CTE given by panelists demonstrated a good overall acceptability. Overall, the results show that CTE is a useful ingredient to incorporate with cooked rice for reduction of starch digestibility.
Collapse
Affiliation(s)
- Charoonsri Chusak
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Jowynn Ang Yu Ying
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joseph Lim Zhien
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Porntip Pasukamonset
- Department of Home Economics, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sathaporn Ngamukote
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirichai Adisakwattana
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
13
|
Zhang M, Xie L, Wang Z, Lu X, Zhou Q. Using Fe(III)-coagulant-modified colloidal gas aphrons to remove bio-recalcitrant dissolved organic matter and colorants from cassava distillery wastewater. BIORESOURCE TECHNOLOGY 2018; 268:346-354. [PMID: 30096642 DOI: 10.1016/j.biortech.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Efficient removal of bio-recalcitrant dissolved organic matter (DOM) and colorants is essential for discharging or reusing the distillery wastewater. The present work adopted a novel microbubble system - Fe(III)-coagulant-modified colloidal gas aphrons (CGAs) in flotation as tertiary treatment of the bio-chemically treated cassava distillery wastewater. Approximately 93% of bio-recalcitrant color and around 79% of dissolved organic carbon (DOC) were removed at the initial pH of 9.0 and 7.1, individually. The modified CGAs exhibited strong ability of complexation and electrostatic attraction of the polyanions of DOM and colorants. But the 1-10 kDa DOM was found to be resistant to the CGA capture. Compared with directly dosing coagulant, the Fe(III)-coagulant-modified CGAs consumed ∼47% and ∼21% less coagulant to achieve the optimum decoloration efficiency and DOC removal, respectively. In the flotation with Fe(III)-coagulant-modified CGAs, the coagulant-dosing system could be omitted while the coagulant utilization was improved.
Collapse
Affiliation(s)
- Ming Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zhou Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaoli Lu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
14
|
Effects of pectin with different molecular weight on gelatinization behavior, textural properties, retrogradation and in vitro digestibility of corn starch. Food Chem 2018; 264:58-63. [DOI: 10.1016/j.foodchem.2018.05.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/26/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
|
15
|
Xiao J, Zhong Q. Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Niu L, Wu L, Xiao J. Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates. Carbohydr Polym 2017; 175:311-319. [DOI: 10.1016/j.carbpol.2017.07.070] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/27/2022]
|
17
|
Zhang M, Wang Z, Li P, Zhang H, Xie L. Bio-refractory dissolved organic matter and colorants in cassava distillery wastewater: Characterization, coagulation treatment and mechanisms. CHEMOSPHERE 2017; 178:259-267. [PMID: 28334666 DOI: 10.1016/j.chemosphere.2017.03.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
An important portion of organic matter and colorants still remain in the biologically treated distillery wastewater, leaving the dark brown and odorous downstream with the heavy loading of chemical oxygen demand and the potential of forming disinfection byproducts. However, those bio-recalcitrant colorants have not been clearly recognized. The current study investigated the features of the bio-refractory organic matter and colorants in a typical distillery effluent, cassava distillery wastewater; special attention was paid to their change and behaviors in the coagulation treatment following the bio-processes. The wastewater analyses denoted that the fraction of high molecular weight (1-50 kDa and >50 kDa) became predominant after the anaerobic-aerobic processes. Importantly, the lignin breakdown products, melanoidins and lignin phenols were confirmed to be the leading colored components, according to the parallel factor analysis of fluorescence excitation-emission matrixes results. Compared with lignin phenols, the former two types of colorants exhibited stronger bio-refractory activity and resulted in smaller color reduction after the aerobic treatment. Neither advanced oxidation nor adsorption could perform efficiently as post-treatment for decolorization in this study. Nevertheless, high removal of color and dissolved organic matter (∼94.0% and ∼78.3%, respectively) could be achieved by the FeCl3-involved coagulation under the optimal conditions. The ferric coagulant was found to preferably interact with the aromatic compounds (such as lignin derivatives) and melanoidins via either surface complexation or electric charge neutralization, or both. The findings presented herein might provide an insight into the evaluation of bio-refractory organic colorants and the Fe(III)-involved decolorization mechanisms of ethanol production wastewaters.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zhou Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Penghui Li
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|