1
|
Hosnedlova B, Vsetickova M, Stankova M, Uhlirova D, Ruttkay-Nedecky B, Ofomaja A, Fernandez C, Kepinska M, Baron M, Ngoc BD, Nguyen HV, Thu HPT, Sochor J, Kizek R. Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions. NANOMATERIALS 2020; 10:nano10050865. [PMID: 32365860 PMCID: PMC7279304 DOI: 10.3390/nano10050865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
The irradiance of ultraviolet (UV) radiation is a physical parameter that significantly influences biological molecules by affecting their molecular structure. The influence of UV radiation on nanoparticles has not been investigated much. In this work, the ability of cadmium telluride quantum dots (CdTe QDs) to respond to natural UV radiation was examined. The average size of the yellow QDs was 4 nm, and the sizes of green, red and orange QDs were 2 nm. Quantum yield of green CdTe QDs-MSA (mercaptosuccinic acid)-A, yellow CdTe QDs-MSA-B, orange CdTe QDs-MSA-C and red CdTe QDs-MSA-D were 23.0%, 16.0%, 18.0% and 7.0%, respectively. Green, yellow, orange and red CdTe QDs were replaced every day and exposed to daily UV radiation for 12 h for seven consecutive days in summer with UV index signal integration ranging from 1894 to 2970. The rising dose of UV radiation led to the release of cadmium ions and the change in the size of individual QDs. The shifts were evident in absorption signals (shifts of the absorbance maxima of individual CdTe QDs-MSA were in the range of 6–79 nm), sulfhydryl (SH)-group signals (after UV exposure, the largest changes in the differential signal of the SH groups were observed in the orange, green, and yellow QDs, while in red QDs, there were almost no changes), fluorescence, and electrochemical signals. Yellow, orange and green QDs showed a stronger response to UV radiation than red ones.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, CZ-691 44 Lednice, Czech Republic; (B.H.); (M.V.); (B.R.-N.); (M.B.); (J.S.)
| | - Michaela Vsetickova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, CZ-691 44 Lednice, Czech Republic; (B.H.); (M.V.); (B.R.-N.); (M.B.); (J.S.)
- Department of Research and Development, Prevention Medicals, 742 13 Studenka-Butovice, Czech Republic; (M.S.); (D.U.)
| | - Martina Stankova
- Department of Research and Development, Prevention Medicals, 742 13 Studenka-Butovice, Czech Republic; (M.S.); (D.U.)
| | - Dagmar Uhlirova
- Department of Research and Development, Prevention Medicals, 742 13 Studenka-Butovice, Czech Republic; (M.S.); (D.U.)
| | - Branislav Ruttkay-Nedecky
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, CZ-691 44 Lednice, Czech Republic; (B.H.); (M.V.); (B.R.-N.); (M.B.); (J.S.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - Augustine Ofomaja
- Biosorption and Wastewater Treatment Research Laboratory, Department of Chemistry, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7QB, UK;
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, CZ-691 44 Lednice, Czech Republic; (B.H.); (M.V.); (B.R.-N.); (M.B.); (J.S.)
| | - Bach Duong Ngoc
- Research Center for Environmental Monitoring and Modeling, University of Science, Vietnam National University, Hanoi 100000, Vietnam; (B.D.N.); (H.V.N.)
| | - Hoai Viet Nguyen
- Research Center for Environmental Monitoring and Modeling, University of Science, Vietnam National University, Hanoi 100000, Vietnam; (B.D.N.); (H.V.N.)
| | - Ha Pham Thi Thu
- Faculty of Environmental Science, University of Science, Vietnam National University, Hanoi 100000, Vietnam;
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, CZ-691 44 Lednice, Czech Republic; (B.H.); (M.V.); (B.R.-N.); (M.B.); (J.S.)
| | - Rene Kizek
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, CZ-691 44 Lednice, Czech Republic; (B.H.); (M.V.); (B.R.-N.); (M.B.); (J.S.)
- Department of Research and Development, Prevention Medicals, 742 13 Studenka-Butovice, Czech Republic; (M.S.); (D.U.)
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
- Correspondence: ; Tel./Fax: +42-05-4156-2820
| |
Collapse
|
3
|
Cunha C, Oliveira A, Firmino T, Tenório D, Pereira G, Carvalho L, Santos B, Correia M, Fontes A. Biomedical applications of glyconanoparticles based on quantum dots. Biochim Biophys Acta Gen Subj 2018; 1862:427-439. [DOI: 10.1016/j.bbagen.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/07/2023]
|
4
|
Cunha CR, Andrade CG, Pereira MI, Cabral Filho PE, Carvalho LB, Coelho LC, Santos BS, Fontes A, Correia MT. Quantum dot–Cramoll lectin as novel conjugates to glycobiology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:85-91. [DOI: 10.1016/j.jphotobiol.2017.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
|
5
|
Yang S, Shang Y, Wang D, Yin S, Cai J, Liu X. Diagnosis of porcine circovirus type 2 infection with a combination of immunomagnetic beads, single-domain antibody, and fluorescent quantum dot probes. Arch Virol 2015; 160:2325-34. [PMID: 26153546 DOI: 10.1007/s00705-015-2508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/20/2015] [Indexed: 01/03/2023]
Abstract
The use of a specific antibody conjugated with nanobeads, forming immunomagnetic nanobeads (IMNBs), has been demonstrated to be useful for the capture and detection of viruses. In this study, IMNBs functionalized with a single-domain antibody against the capsid protein (Cap) of porcine circovirus type 2 (PCV2), hereafter denoted as psdAb, were evaluated and used to capture PCV2. Quantum dots (QDs) conjugated with psdAb were used as a fluorescence probe to visualize PCV2 captured by IMNBs. The specificity and sensitivity of this method were further evaluated using common pathogens of pig viral disease and PCV2. To assess its practicality, clinical samples were tested in this study. The results showed that 2.57 ± 0.13 mg Cap or 0.97 ± 0.064 × 10(6) copies of PCV2 particles could be captured by 1 mg of IMNBs in 30 min. This suggests that the IMNBs have the ability to efficiently capture PCV2 with good specificity, as there was no cross-reaction with other pathogens, and with strong sensitivity, with a detection limit as low as 10(3) copies/ml of PCV2 particles. Moreover, PCV2 in inguinal lymph node, lung, spleen, serum, and fecal samples was successfully detected by IMNBs. The results demonstrate that this method is promising for the rapid and effective detection of PCV2 in complex clinical samples.
Collapse
Affiliation(s)
- Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangbu, Lanzhou, 730046, Gansu, China,
| | | | | | | | | | | |
Collapse
|