1
|
Yan X, Zhang H, Zhu Z, Xie Y, Wu X, Shi Z, Fan C, Chen H. Simultaneous determination of 78 pesticide residues and 16 mycotoxins in tsampa by an improved QuEChERS method coupled with ultra performance liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5178-5190. [PMID: 38920115 DOI: 10.1039/d4ay00735b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Tsampa may contain pesticide residues and mycotoxins, which may pose a risk to human health. Currently, pesticide detection and mycotoxin detection are two independent experiments. To improve the efficiency of the analysis, a method based on QuEChERS combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of 78 pesticides and 16 mycotoxins in tsampa was developed. All the target compounds showed good linear correlation with correlation coefficients (R2) greater than 0.9990. The limits of detection (LODs) and limits of quantification (LOQs) were in the ranges of 0.10-3.00 μg kg-1 and 0.40-10.00 μg kg-1, respectively. The average recoveries of the pesticides and mycotoxins spiked at the 1, 2, and 10-fold LOQ were in the range of 73.0-115.2%, and the relative standard deviations (RSDs) were lower than 11.7%. This method was applied to 19 batches of real samples in which 32% of samples exceeded the maximum residue limits of the European Union involving aflatoxin G2, ochratoxin A, and hexaconazole. It proved to be excellent, efficient, greatly simplified, and highly applicable, which could reduce the workload and time significantly for the daily monitoring of the pesticides and mycotoxins in tsampa.
Collapse
Affiliation(s)
- Xiaoxian Yan
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Hongyan Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Zhehui Zhu
- Tibet Product Quality Supervision and Inspection Institute, Lhasa 850000, China
| | - Yujie Xie
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Xingqiang Wu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Zhihong Shi
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| | - Chunlin Fan
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Hui Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
2
|
Zhang M, Guo X, Wang J. Advanced biosensors for mycotoxin detection incorporating miniaturized meters. Biosens Bioelectron 2023; 224:115077. [PMID: 36669289 DOI: 10.1016/j.bios.2023.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Advanced biosensors, considered as emerging technologies, are capable of accurate, quantitative and real-time analysis for point-of-care testing (POCT) applications. Moreover, the integrating of miniaturized meters into these advanced biosensors makes them ideally appropriate for portable, sensitive and selective detection of biomolecules. Miniaturized meters including PGMs (personal glucose meters), thermometer, pressuremeter, pH meter, etc. are the most accurate devices and wide availability in the market, exhibiting a promising potential towards detection of small molecule mycotoxins. In this article, we introduce and analyze the recent advancements for sensing of mycotoxins measured by handheld meters since the first report in 2012. Furthermore, limitations and challenges for versatile meters application against mycotoxins in food matrix are highlighted. By overcoming the bottleneck problems, we believe the miniaturized meters-based biosensor platform will provide great possibilities for mycotoxins analysis and launch them to the market.
Collapse
Affiliation(s)
- Mengke Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Xiaodong Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Vardali S, Papadouli C, Rigos G, Nengas I, Panagiotaki P, Golomazou E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023; 28:2519. [PMID: 36985489 PMCID: PMC10053411 DOI: 10.3390/molecules28062519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Low-cost plant-based sources used in aquaculture diets are prone to the occurrence of animal feed contaminants, which may in certain conditions affect the quality and safety of aquafeeds. Mycotoxins, a toxic group of small organic molecules produced by fungi, comprise a frequently occurring plant-based feed contaminant in aquafeeds. Mycotoxin contamination can potentially cause significant mortality, reduced productivity, and higher disease susceptibility; thus, its timely detection is crucial to the aquaculture industry. The present review summarizes the methodological advances, developed mainly during the past decade, related to mycotoxin detection in aquafeed ingredients, namely analytical, chromatographic, and immunological methodologies, as well as the use of biosensors and spectroscopic methods which are becoming more prevalent. Rapid and accurate mycotoxin detection is and will continue to be crucial to the food industry, animal production, and the environment, resulting in further improvements and developments in mycotoxin detection techniques.
Collapse
Affiliation(s)
- Sofia Vardali
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Christina Papadouli
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Ioannis Nengas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Panagiota Panagiotaki
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Eleni Golomazou
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
4
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Zhai W, You T, Ouyang X, Wang M. Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy. Compr Rev Food Sci Food Saf 2021; 20:1887-1909. [PMID: 33410224 DOI: 10.1111/1541-4337.12686] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
Mycotoxins are toxic compounds naturally produced by certain types of fungi. The contamination of mycotoxins can occur on numerous foodstuffs, including cereals, nuts, fruits, and spices, and pose a major threat to humans and animals by causing acute and chronic toxic effects. In this regard, reliable techniques for accurate and sensitive detection of mycotoxins in agricultural products and food samples are urgently needed. As an advanced analytical tool, surface-enhanced Raman spectroscopy (SERS), presents several major advantages, such as ultrahigh sensitivity, rapid detection, fingerprint-type information, and miniaturized equipment. Benefiting from these merits, rapid growth has been observed under the topic of SERS-based mycotoxin detection. This review provides a comprehensive overview of the recent achievements in this area. The progress of SERS-based label-free detection, aptasensor, and immunosensor, as well as SERS combined with other techniques, has been summarized, and in-depth discussion of the remaining challenges has been provided, in order to inspire future development of translating the techniques invented in scientific laboratories into easy-to-operate analytic platforms for rapid detection of mycotoxins.
Collapse
Affiliation(s)
- Wenlei Zhai
- Beijing Research Center for Agricultural Standards and Testing, Haidian District, Beijing, P. R. China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xihui Ouyang
- Laboratory of Quality and Safety Risk Assessment for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs/Beijing Municipal Station of Agro-Environmental Monitoring, Beijing, P. R. China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, Haidian District, Beijing, P. R. China
| |
Collapse
|
6
|
SHENG J, ZUO J, LIU K, MA L, LI C, LI Y, KONG D. Highly selective enrichment of aflatoxin B1 from edible oil using polydopamine-modified magnetic nanomaterials. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.34619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Jingjing ZUO
- Jiangsu University of Science and Technology, China
| | - Kejie LIU
- Jiangsu University of Science and Technology, China
| | - Lei MA
- Jiangsu University of Science and Technology, China
| | - Chao LI
- Jiangsu University of Science and Technology, China
| | - Yaqi LI
- Jiangsu University of Science and Technology, China
| | - Dezhao KONG
- Jiangsu University of Science and Technology, China
| |
Collapse
|
7
|
Kumari A, Joshua R, Kumar R, Ahlawat P, Sindhu SC. Fungal Mycotoxins: Occurrence and Detection. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Rodríguez-Blanco M, Marín S, Sanchis V, Ramos AJ. Fusarium mycotoxins in total mixed rations for dairy cows. Mycotoxin Res 2020; 36:277-286. [PMID: 32048206 DOI: 10.1007/s12550-020-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
Abstract
Mycotoxins produced by certain fungal species of the Fusarium genus are frequently found as contaminants in cereals and feedstuffs. Fumonisins (FBs), deoxynivalenol (DON) and zearalenone (ZEN) are of special concern relative to animal health and productivity. The aim of this work was to analyse the levels of Fusarium mycotoxin contamination in samples of total mixed rations (TMRs) for dairy cows. To accomplish this analysis, an HPLC-MS/MS multi-mycotoxin method was developed and validated. The relation between the formulation of TMR samples and the presence of mycotoxins was also studied. From February 2016 to January 2018, a total of 193 TMR samples for dairy cows collected from farms located in different areas of Spain were analysed for the presence of FBs, ZEN, DON and their metabolites. In total, 112 samples (58%) were contaminated with at least one mycotoxin, and 38 samples (20%) presented more than one mycotoxin. FBs were the mycotoxins most frequently found (34% positive samples). DON was detected in 17% of samples, and ZEN was detected in 16% of samples. Among the metabolites analysed, only deoxynivalenol-3-glucoside (DON-3-Glc) and 15-acetyldeoxynivalenol (15-ADON) were detected. The levels of all the Fusarium mycotoxins studied were always below the values recommended by the European Commission for feedstuffs. The wide variety of ingredients used in the formulation of the analysed samples made it difficult to reach definite conclusions, although it seemed that some cereal silages and concentrates such as cereals or compound feed used as ingredients of the TMR may be related to the presence of mycotoxins.
Collapse
Affiliation(s)
- María Rodríguez-Blanco
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Vicente Sanchis
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Centre, Av. Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
9
|
Ma S, Wang M, You T, Wang K. Using Magnetic Multiwalled Carbon Nanotubes as Modified QuEChERS Adsorbent for Simultaneous Determination of Multiple Mycotoxins in Grains by UPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8035-8044. [PMID: 31282154 DOI: 10.1021/acs.jafc.9b00090] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The simultaneous detection of multiple mycotoxins is important due to the increased toxic effects of combined mycotoxins in grains. In this research, a combination of modified QuEChERS with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for simultaneous detection of 20 mycotoxins in grains. A series of different types of magnetic (Fe3O4) nanoparticles modified with multiwalled carbon nanotubes (Fe3O4-MWCNTs) were designed as modified QuEChERS adsorbents for facile and efficient purification and for target interferences removal in the matrices. When there is an external magnetic field, the proposed modified QuEChERS method uses a shorter pretreatment time compared with the traditional QuEChERS method, which makes it possible to conduct high-throughput analyses. To optimize the QuEChERS process, the extraction solvent and the type and amount of the Fe3O4-MWCNTs were investigated. Under optimal conditions, the method was validated and showed satisfactory linearity (r2 ≥ 0.9965), good recovery (73.5-112.9%), good precision (1.3-12.7%), and excellent sensitivity (ranging from 0.0021 to 5.4457 ng g-1), which indicates that this method can be used for detecting multiple mycotoxins in real samples.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , P.R. China
- Beijing Research Center for Agricultural Standards and Testing, Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture , Beijing Municipal Key Laboratory of Agriculture Environment Monitoring , No. 9 Middle Road of Shu Guang Hua Yuan, Haidian Dist. , Beijing 100097 , P.R. China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture , Beijing Municipal Key Laboratory of Agriculture Environment Monitoring , No. 9 Middle Road of Shu Guang Hua Yuan, Haidian Dist. , Beijing 100097 , P.R. China
| | - Tianyan You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , P.R. China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , P.R. China
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P.R. China
| |
Collapse
|
10
|
Liang J, Dong Y, Yuan X, Fan L, Zhao S, Wang L. Fast determination of 14 mycotoxins in chestnut by dispersive solid‐phase extraction coupled with ultra high performance liquid chromatography‐tandem mass spectrometry. J Sep Sci 2019; 42:2191-2201. [DOI: 10.1002/jssc.201900050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural Sciences Jinan P. R. China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety Jinan P. R. China
| | - Yanjie Dong
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural Sciences Jinan P. R. China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety Jinan P. R. China
| | - Xuexia Yuan
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural Sciences Jinan P. R. China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety Jinan P. R. China
| | - Lixia Fan
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural Sciences Jinan P. R. China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety Jinan P. R. China
| | - Shancang Zhao
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural Sciences Jinan P. R. China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety Jinan P. R. China
| | - Lei Wang
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural Sciences Jinan P. R. China
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety Jinan P. R. China
| |
Collapse
|
11
|
Arroyo-Manzanares N, De Ruyck K, Uka V, Gámiz-Gracia L, García-Campaña AM, De Saeger S, Diana Di Mavungu J. In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize. Anal Bioanal Chem 2018; 410:5567-5581. [PMID: 29574560 DOI: 10.1007/s00216-018-1018-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/03/2018] [Accepted: 03/12/2018] [Indexed: 11/29/2022]
Abstract
A fundamental step in addressing the global problem of mycotoxins is the development of highly sensitive, multi-class extraction and detection methods. This constitutes a field of research that has in recent years enjoyed a steady advance. Such methods, generally based on liquid chromatography coupled to mass spectrometry, are widely reported successfully detecting various mycotoxins in different food and feed samples. In this work, an innovative approach to multi-class mycotoxin control is proposed, offering specific advantages: a broader inclusion of more mycotoxin classes, robust and thorough extraction for all target compounds despite their varied chemical properties, and determination of all analytes from a single injection. The method involved the extraction and quantification of the main mycotoxins produced by Aspergillus, Fusarium, and Penicillium fungi, as well as their reported derivatives, together with 12 other compounds most commonly produced by Claviceps purpurea. The popularly reported QuEChERS technique has been reduced to a simple "salting-out liquid-liquid extraction" (SO-LLE) to obtain the most efficient extraction of the aforementioned mycotoxin classes in a very short time. This is in particular extremely important in ensuring correct determination of individual ergot alkaloids, for which short and robust sample preparation as well as short analytical sequences were key for minimizing the epimerization during analysis. The analyses of wheat and maize samples were performed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Matrix-matched calibration curves were established and limits of quantification were below the maximum levels established by the EU regulation. The precision (repeatability and intermediate precision) was lower than 13% in all cases and recoveries ranged between 60 and 98% in maize and between 62 and 103% in wheat, fulfilling the current legislation. The method was applied to study the co-occurrence of these mycotoxins in wheat (n = 13) and maize (n = 15) samples from six European countries. A successful quantification of 23 different mycotoxins, from all major classes, in 85% of wheat and 93% of maize samples was achieved.
Collapse
Affiliation(s)
- Natalia Arroyo-Manzanares
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.,Department of Analytical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Karl De Ruyck
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Valdet Uka
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - José Diana Di Mavungu
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Determination of Trichothecenes in Cereal Matrices Using Subcritical Water Extraction Followed by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1089-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Alshannaq A, Yu JH. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E632. [PMID: 28608841 PMCID: PMC5486318 DOI: 10.3390/ijerph14060632] [Citation(s) in RCA: 613] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi (molds). These low molecular weight compounds (usually less than 1000 Daltons) are naturally occurring and practically unavoidable. They can enter our food chain either directly from plant-based food components contaminated with mycotoxins or by indirect contamination from the growth of toxigenic fungi on food. Mycotoxins can accumulate in maturing corn, cereals, soybeans, sorghum, peanuts, and other food and feed crops in the field and in grain during transportation. Consumption of mycotoxin-contaminated food or feed can cause acute or chronic toxicity in human and animals. In addition to concerns over adverse effects from direct consumption of mycotoxin-contaminated foods and feeds, there is also public health concern over the potential ingestion of animal-derived food products, such as meat, milk, or eggs, containing residues or metabolites of mycotoxins. Members of three fungal genera, Aspergillus, Fusarium, and Penicillium, are the major mycotoxin producers. While over 300 mycotoxins have been identified, six (aflatoxins, trichothecenes, zearalenone, fumonisins, ochratoxins, and patulin) are regularly found in food, posing unpredictable and ongoing food safety problems worldwide. This review summarizes the toxicity of the six mycotoxins, foods commonly contaminated by one or more of them, and the current methods for detection and analysis of these mycotoxins.
Collapse
Affiliation(s)
- Ahmad Alshannaq
- Department of Food Science, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| | - Jae-Hyuk Yu
- Food Research Institute, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|