1
|
Mathematical modeling to estimate furan formation in thermally processed foods: A preliminary analysis considering carrots as a model food. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Pedreschi F, Ferrera A, Bunger A, Alvarez F, Huamán-Castilla NL, Mariotti-Celis MS. Ultrasonic-assisted leaching of glucose and fructose as an alternative mitigation technology of acrylamide and 5- hydroxymethylfurfural in potato chips. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Variable Retort Temperature Profiles (VRTPs) and Retortable Pouches as Tools to Minimize Furan Formation in Thermally Processed Food. Foods 2021; 10:foods10092205. [PMID: 34574319 PMCID: PMC8467077 DOI: 10.3390/foods10092205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Furan and its derivates are present in a wide range of thermally processed foods and are of significant concern in jarred baby and toddler foods. Furan formation is attributed to chemical reactions between a variety of precursors and a high processing temperature. Also, some kinetic models to represent its formation in different food materials have been studied and could predict the furan formation under simulated operating conditions. Therefore, this review aims to analyze and visualize how thermally processed foods might be improved based on optimal control of processing temperature and package design (e.g., retort pouches) to diminish furan formation and maximize quality retention. Many strategies have been studied and applied to reduce furan levels. However, an interesting approach that has not been explored is the thermal process design based on optimum variable retort temperature profiles (VRTPs) and the use of retortable pouches considering the microstructural changes of food along the process. The target of process optimization would be developed by minimizing the microstructural damage of the food product. It could be possible to reduce the furan level and simultaneously preserve the nutritional value through process optimization.
Collapse
|
4
|
Bagis U, Karabulut I. Efficacy of Microencapsulated Carvacrol in Oxidative Stability of Sunflower Oil. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ulkuhan Bagis
- Department of Food Engineering, Faculty of Engineering Inonu University Malatya 44280 Turkey
| | - Ihsan Karabulut
- Department of Food Engineering, Faculty of Engineering Inonu University Malatya 44280 Turkey
| |
Collapse
|
5
|
Han L, Lin Q, Liu G, Han D, Niu L, Su D. Inhibition Mechanism of Catechin, Resveratrol, Butylated Hydroxylanisole, and Tert-Butylhydroquinone on Carboxymethyl 1,2-Dipalmitoyl-sn-Glycero-3-Phosphatidylethanolamine Formation. J Food Sci 2019; 84:2042-2049. [PMID: 31313292 DOI: 10.1111/1750-3841.14668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/25/2023]
Abstract
It is important to inhibit the food-derived, potentially hazardous chemical glycated lipids by natural products. A model system was established and the products are identified to study the inhibitory mechanism of four types of catechin, resveratrol (RES), and the synthetic antioxidants butylated hydroxylanisole (BHA) and tert-butylhydroquinone (TBHQ) on the formation of carboxymethyl 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (CM-DPPE) by determining hydroxyl radical (OH·), Amadori-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (Amadori-DPPE) and glyoxal (GO). The results show that the inhibitory rates of catechin and RES on the content of CM-DPPE in the model system are higher than those of BHA and TBHQ. There are at least two inhibitory mechanisms of antioxidants on CM-DPPE. (1) Antioxidants scavenge OH·, which blocks the process of Amadori-DPPE oxidation to form CM-DPPE. (2) Antioxidants trap GO, which blocks the reaction between GO and DPPE to form CM-DPPE. This research will reveal the inhibitory mechanisms of natural antioxidants on glycated lipids from the aspect of scavenging OH· and trapping GO. PRACTICAL APPLICATION: Food manufacturers should pay attention on the production of glycated lipids in food processing. This study will provide the theoretical basis for the use of natural products to inhibit the formation of food-derived glycated lipids. Natural products, such as catechin and resveratrol, can substitute chemical synthesis antioxidants, such as butylated hydroxylanisole and tert-butylhydroquinone, in food processing, which inhibit the formation of glycated lipids.
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China
| | - Qingna Lin
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China
| | - Guoqin Liu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, China.,School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China
| | - Dongxiao Su
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou Univ., Guangzhou, 510006, China
| |
Collapse
|
6
|
Effect of formulation and baking conditions on the structure and development of non-enzymatic browning in biscuit models using images. Journal of Food Science and Technology 2018; 55:1234-1243. [PMID: 29606738 DOI: 10.1007/s13197-017-3008-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/23/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
The aim of this research was to determine the effect of composition (dietary fiber = DF, fat = F, and gluten = G) and baking time on the target microstructural parameters that were observed using images of potato and wheat starch biscuits. Microstructures were studied Scanning Electron Microscope (SEM). Non-enzymatic browning (NEB) was assessed using color image analysis. Texture and moisture analysis was performed to have a better understanding of the baking process. Analysis of images revealed that the starch granules retained their native form at the end of baking, suggesting their in complete gelatinization. Granules size was similar at several different baking times, with an average equivalent diameter of 9 and 27 µm for wheat and potato starch, respectively. However, samples with different levels of DF and G increased circularity during baking to more than 30%, and also increasing hardness. NEB developed during baking, with the maximum increase observed between 13 and 19 min. This was reflected in decreased luminosity (L*) values due to a decrease in moisture levels. After 19 min, luminosity did not vary significantly. The ingredients that are used, as well as their quantities, can affect sample L* values. Therefore, choosing the correct ingredients and quantities can lead to different microstructures in the biscuits, with varying amounts of NEB products.
Collapse
|
7
|
Srivastava R, Bousquières J, Cepeda-Vázquez M, Roux S, Bonazzi C, Rega B. Kinetic study of furan and furfural generation during baking of cake models. Food Chem 2017; 267:329-336. [PMID: 29934175 DOI: 10.1016/j.foodchem.2017.06.126] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/25/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023]
Abstract
This study describes the kinetics of furan and furfural generation in a cake model, for the first time. These process-induced compounds impact safety and sensory aspects of baked products. Understanding their generation with regards to process dynamics will serve food quality design. However, the complexity of real products makes this task challenging. This work provides a novel approach to understand and model chemical reactivity by implementing an inert cake model (starch, water and cellulose), specifically designed for mimicking a sponge cake structure. The addition of reaction precursors (glucose and leucine) to follow Maillard and caramelization reactions, resulted in browning and generated considerable levels of furanic compounds (up to 17.61ng/g for furan and 38.99μg/g for furfural, dry basis). Multiresponse data modeling resulted in a kinetic model which adequately describes experimental concentrations and makes it possible to estimate the degradation of precursors and the behavior of two hypothetic intermediates.
Collapse
Affiliation(s)
- R Srivastava
- UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France
| | - J Bousquières
- UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France
| | - M Cepeda-Vázquez
- UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France
| | - S Roux
- UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France
| | - C Bonazzi
- UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France
| | - B Rega
- UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France.
| |
Collapse
|