1
|
Younas H, Nazir A, Bareen FE. Application of microbe-impregnated tannery solid waste biochar in soil enhances growth performance of sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57669-57687. [PMID: 35355176 DOI: 10.1007/s11356-022-19913-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Synergistic effect of biochar and microbes in soil enhances performance of plants. Hazardous tannery solid waste can be reduced by one-third in volume by conversion to biochar. A greenhouse trial was set up with soil having different doses of metal resistant microbe-impregnated biochar (MIBC) prepared from tannery solid waste. Consortia of autochthonous strains of Trichoderma and Bacillus were inoculated on BC and the behavior and fate of metals were evaluated for their bioavailability to sunflower. Sunflower was grown in pots for 80 days having six different amendments of tannery solid waste biochar (0-10% w/w) with and without Trichoderma and Bacillus consortia and its morphological and biochemical attributes as well as metal uptake were observed. The results illustrated that application of BC at 2% rate without inoculation increased the shoot length and dry biomass by 19.8% and 77.4%, respectively, while plant growth and performance were reduced at higher amendments of BC. However, application of MIBC with Trichoderma or/and Bacillus consortium significantly improved the plant attributes at all levels of amendment. The results indicated that MIBC having Trichoderma and Bacillus consortia at 10% rate increased shoot length and dry biomass by 65.3% and 516% compared to control without BC. Application of BC without inoculation reduced the uptake of Cu, Fe, and Ni and increased the mobilization of all other metals for uptake in sunflower. Mobilization and uptake of Cd, Cr, Cu, Ni, Pb, and Zn decreased with MIBC having Trichoderma and Bacillus consortia whereas that of Fe and Mg were noted. A considerable decrease in proline and total phenolic content was demonstrated by MIBC-grown sunflower. The data of metal fractionation in BC also supported the above findings. Therefore, MIBC can be used as a promising option for enhancing growth performance and ensuring the physiological safety of sunflower as an energy crop.
Collapse
Affiliation(s)
- Hajira Younas
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
| | - Firdaus-E Bareen
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, 54000, Pakistan.
| |
Collapse
|
2
|
Benmahieddine A, Belyagoubi-Benhammou N, Belyagoubi L, El Zerey-Belaskri A, Gismondi A, Di Marco G, Canini A, Bechlaghem N, Atik Bekkara F, Djebli N. Influence of plant and environment parameters on phytochemical composition and biological properties of Pistacia atlantica Desf. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Lombardi N, Salzano AM, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Caira S, Lorito M, d’Errico G, Lanzuise S, Woo SL. Effect of Trichoderma Bioactive Metabolite Treatments on the Production, Quality, and Protein Profile of Strawberry Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7246-7258. [PMID: 32426974 PMCID: PMC8154561 DOI: 10.1021/acs.jafc.0c01438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
Fungi of the genus Trichoderma produce secondary metabolites having several biological activities that affect plant metabolism. We examined the effect of three Trichoderma bioactive metabolites (BAMs), namely, 6-pentyl-α-pyrone (6PP), harzianic acid (HA), and hydrophobin 1 (HYTLO1), on yield, fruit quality, and protein representation of strawberry plants. In particular, 6PP and HA increased the plant yield and number of fruits, when compared to control, while HYTLO1 promoted the growth of the roots and increased the total soluble solids content up to 19% and the accumulation of ascorbic acid and cyanidin 3-O-glucoside in red ripened fruits. Proteomic analysis showed that BAMs influenced the representation of proteins associated with the protein metabolism, response to stress/external stimuli, vesicle trafficking, carbon/energy, and secondary metabolism. Results suggest that the application of Trichoderma BAMs affects strawberry plant productivity and fruit quality and integrate previous observations on deregulated molecular processes in roots and leaves of Trichoderma-treated plants with original data on fruits.
Collapse
Affiliation(s)
- Nadia Lombardi
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Anna Maria Salzano
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Antonio Dario Troise
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Paola Vitaglione
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Francesco Vinale
- Department
of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Naples, Italy
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
| | - Roberta Marra
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Simonetta Caira
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Matteo Lorito
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
- Task
Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Giada d’Errico
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Stefania Lanzuise
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Sheridan Lois Woo
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
- Task
Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
- Department
of Pharmacy, University of Naples Federico
II, 80131 Naples, Italy
| |
Collapse
|
4
|
Lombardi N, Caira S, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Salzano AM, Lorito M, Woo SL. Trichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Front Microbiol 2020; 11:1364. [PMID: 32719661 PMCID: PMC7350708 DOI: 10.3389/fmicb.2020.01364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Many Trichoderma spp. are successful plant beneficial microbial inoculants due to their ability to act as biocontrol agents with direct antagonistic activities to phytopathogens, and as biostimulants capable of promoting plant growth. This work investigated the effects of treatments with three selected Trichoderma strains (T22, TH1, and GV41) to strawberry plants on the productivity, metabolites and proteome of the formed fruits. Trichoderma applications stimulated plant growth, increased strawberry fruit yield, and favored selective accumulation of anthocyanins and other antioxidants in red ripened fruits. Proteomic analysis of fruits harvested from the plants previously treated with Trichoderma demonstrated that the microbial inoculants highly affected the representation of proteins associated with responses to stress/external stimuli, nutrient uptake, protein metabolism, carbon/energy metabolism and secondary metabolism, also providing a possible explanation to the presence of specific metabolites in fruits. Bioinformatic analysis of these differential proteins revealed a central network of interacting molecular species, providing a rationale to the concomitant modulation of different plant physiological processes following the microbial inoculation. These findings indicated that the application of Trichoderma-based products exerts a positive impact on strawberry, integrating well with previous observations on the molecular mechanisms activated in roots and leaves of other tested plant species, demonstrating that the efficacy of using a biological approach with beneficial microbes on the maturing plant is also able to transfer advantages to the developing fruits.
Collapse
Affiliation(s)
- Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simonetta Caira
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Calvano A, Izuora K, Oh EC, Ebersole JL, Lyons TJ, Basu A. Dietary berries, insulin resistance and type 2 diabetes: an overview of human feeding trials. Food Funct 2020; 10:6227-6243. [PMID: 31591634 DOI: 10.1039/c9fo01426h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary berries are a rich source of several nutrients and phytochemicals and in recent years, accumulating evidence suggests they can reduce risks of several chronic diseases, including type 2 diabetes (T2D). The objective of this review is to summarize and discuss the role of dietary berries (taken as fresh, frozen, or other processed forms) on insulin resistance and biomarkers of T2D in human feeding studies. Reported feeding trials involve different berries taken in different forms, and consequently differences in nutritional or polyphenol composition must be considered in their interpretation. Commonly consumed berries, especially cranberries, blueberries, raspberries and strawberries, ameliorate postprandial hyperglycemia and hyperinsulinemia in overweight or obese adults with insulin resistance, and in adults with the metabolic syndrome (MetS). In non-acute long-term studies, these berries either alone, or in combination with other functional foods or dietary interventions, can improve glycemic and lipid profiles, blood pressure and surrogate markers of atherosclerosis. Studies specifically in people with T2D are few, and more knowledge is needed. Nevertheless, existing evidence, although sparse, suggests that berries have an emerging role in dietary strategies for the prevention of diabetes and its complications in adults. Despite the beneficial effects of berries on diabetes prevention and management, they must be consumed as part of a healthy and balanced diet.
Collapse
Affiliation(s)
- Aaron Calvano
- Department of Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Changes in anticholinesterase, antioxidant activities and related bioactive compounds of carob pulp (Ceratonia siliqua L.) during ripening stages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00344-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Identification and Characterization of Phenylpropanoid Biosynthetic Genes and Their Accumulation in Bitter Melon (Momordica charantia). Molecules 2018; 23:molecules23020469. [PMID: 29466305 PMCID: PMC6016960 DOI: 10.3390/molecules23020469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/24/2022] Open
Abstract
Phenylpropanoids and flavonoids belong to a large group of secondary metabolites, and are considered to have antioxidant activity, which protects the cells against biotic and abiotic stresses. However, the accumulation of phenylpropanoids and flavonoids in bitter melon has rarely been studied. Here, we identify ten putative phenylpropanoid and flavonoid biosynthetic genes in bitter melon. Most genes were highly expressed in leaves and/or flowers. HPLC analysis showed that rutin and epicatechin were the most abundant compounds in bitter melon. Rutin content was the highest in leaves, whereas epicatechin was highly accumulated in flowers and fruits. The accumulation patterns of trans-cinnamic acid, p-coumaric acid, ferulic acid, kaempferol, and rutin coincide with the expression patterns of McPAL, McC4H, McCOMT, McFLS, and Mc3GT, respectively, suggesting that these genes play important roles in phenylpropanoid and flavonoid biosynthesis in bitter melon. In addition, we also investigated the optimum light conditions for enhancing phenylpropanoid and flavonoid biosynthesis and found that blue light was the most effective wavelength for enhanced accumulation of phenylpropanoids and flavonoids in bitter melon.
Collapse
|