1
|
Lu C, Zhang Y, Qin Y, Zhou J, Wang Y, Su X, Han J. Tuna Dark Muscle Feeding Improved the Meat Quality of Holland Mini-Piglets and Modulated the Gut Microbiota. Foods 2024; 13:1577. [PMID: 38790877 PMCID: PMC11121099 DOI: 10.3390/foods13101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pork is one of the most widely produced and consumed meats in the world, and it is also an important source of animal protein. The continuous rise in feed prices has forced the pig industry to consider adding cost-effective alternative feed to pig diets. In this study, we aimed to explore the beneficial effects of tuna dark muscle as a nutritional supplement on the growth performance, serum lipids and antioxidant levels of Holland mini-piglets, as well as on the odor and volatile substances of pork and the gut microbiota. Two-month-old male mini-piglets (n = 24) were fed a control diet or supplemented with either 2% (LD) or 4% (HD) tuna dark muscle for 8 weeks. The use of tuna dark muscle at low and high dosages significantly increased the average daily weight gain, but it showed no significant effect on organ indices or blood lipids. In addition, dark muscle treatment significantly increased the antioxidant capacity, characterized by increased SOD and GSH-Px activities, and it decreased the content of MDA in serum. Moreover, tuna dark muscle feeding shifted the odor of rib muscle and tendon meat away from that of the control group, while similar odor patterns were observed in the longissimus dorsi muscle. Among these volatile substances, hexanal, nonanal, and heptanal increased in response to dietary tuna dark muscle and were regarded as indispensable contributors to the feeding. Furthermore, dietary tuna dark muscle modulated the gut microbiota of the piglets, increasing the abundance of beneficial bacteria such as butyric acid-producing bacteria, and reduced the abundance of harmful bacteria. The feeding strategy reported in this study not only reduces the production costs of pork but also utilizes tuna processing by-products in an environmentally friendly way.
Collapse
Affiliation(s)
- Chenyang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Yuanming Zhang
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Yang Qin
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Jiaojiao Han
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| |
Collapse
|
2
|
Effects of diets containing proteins from fish muscles or fish by-products on the circulating cholesterol concentration in rodents: a systematic review and meta-analysis. Br J Nutr 2022:1-22. [PMID: 36268726 DOI: 10.1017/s000711452200349x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A high circulating cholesterol concentration is considered an important risk factor for the development of CVD. Since lean fish intake and fish protein supplementation have been associated with lower cholesterol concentration in some but not all clinical studies, the main aim of this study was to investigate the effect of diets containing proteins from fish muscles and fish by-products on the serum/plasma total cholesterol (TC) concentration in rodents. A systematic literature search was performed using the databases PubMed, Web of Science and Embase, structured around the population (rodents), intervention (type of fish and fraction, protein dose and duration), comparator (casein) and the primary outcome (circulating TC). Articles were assessed for risk of bias using the SYRCLE's tool. A meta-analysis was conducted in Review Manager v. 5·4·1 (the Cochrane Collaboration) to determine the effectiveness of proteins from fish on the circulating TC concentration. Thirty-nine articles were included in the systematic review and meta-analysis, with data from 935 rodents. The risk of bias is unclear since few of the entries in the SYRCLE's tool were addressed. Consumption of proteins from fish resulted in a significantly lower circulating TC concentration when compared with control groups (mean difference -0·24 mmol/l, 95 % CI - 0·34, -0·15, P < 0·00001), with high statistical heterogeneity (I2 = 71 %). To conclude, proteins from fish muscles and by-products show promise as a functional dietary ingredient or supplement by preventing high cholesterol concentration in rodents, thus reducing one of the most important risk factors for developing CVD.
Collapse
|
3
|
Qiao QQ, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Preparation, Characterization, and Cytoprotective Effects on HUVECs of Fourteen Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides From Protein Hydrolysate of Tuna Processing By-Products. Front Nutr 2022; 9:868681. [PMID: 35495901 PMCID: PMC9046991 DOI: 10.3389/fnut.2022.868681] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
To effectively utilize skipjack tuna (Katsuwonus pelamis) processing by-products to prepare peptides with high angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) activity, Neutrase was selected from five kinds of protease for hydrolyzing skipjack tuna dark muscle, and its best hydrolysis conditions were optimized as enzyme dose of 1.6%, pH 6.7, and temperature of 50°C using single factor and response surface experiments. Subsequently, 14 novel ACEi peptides were prepared from the high ACEi protein hydrolysate and identified as TE, AG, MWN, MEKS, VK, MQR, MKKS, VKRT, IPK, YNY, LPRS, FEK, IRR, and WERGE. MWN, MEKS, MKKS, and LPRS displayed significantly ACEi activity with IC50 values of 0.328 ± 0.035, 0.527 ± 0.030, 0.269 ± 0.006, and 0.495 ± 0.024 mg/mL, respectively. Furthermore, LPRS showed the highest increasing ability on nitric oxide (NO) production among four ACEi peptides combining the direct increase and reversing the negative influence of norepinephrine (NE), and MKKS showed the highest ability on directly decreasing and reversing the side effects of NE on the secretion level of endothelin-1 (ET-1) among four ACEi peptides. These findings demonstrate that seafood by-product proteins are potential ACEi peptide sources and prepared ACEi peptides from skipjack tuna dark muscle, which are beneficial components for functional food against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Qian-Qian Qiao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qian-Bin Luo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Chang-Feng Chi
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Bin Wang
| |
Collapse
|
4
|
Zheng SL, Luo QB, Suo SK, Zhao YQ, Chi CF, Wang B. Preparation, Identification, Molecular Docking Study and Protective Function on HUVECs of Novel ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack Tuna Muscle. Mar Drugs 2022; 20:md20030176. [PMID: 35323475 PMCID: PMC8954214 DOI: 10.3390/md20030176] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
To prepare bioactive peptides with high angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) activity, Alcalase was selected from five kinds of protease for hydrolyzing Skipjack tuna (Katsuwonus pelamis) muscle, and its best hydrolysis conditions were optimized using single factor and response surface experiments. Then, the high ACEi protein hydrolysate (TMPH) of skipjack tuna muscle was prepared using Alcalase under the optimum conditions of enzyme dose 2.3%, enzymolysis temperature 56.2 °C, and pH 9.4, and its ACEi activity reached 72.71% at 1.0 mg/mL. Subsequently, six novel ACEi peptides were prepared from TMPH using ultrafiltration and chromatography methods and were identified as Ser-Pro (SP), Val-Asp-Arg-Tyr-Phe (VDRYF), Val-His-Gly-Val-Val (VHGVV), Tyr-Glu (YE), Phe-Glu-Met (FEM), and Phe-Trp-Arg-Val (FWRV), with molecular weights of 202.3, 698.9, 509.7, 310.4, 425.6, and 606.8 Da, respectively. SP and VDRYF displayed noticeable ACEi activity, with IC50 values of 0.06 ± 0.01 and 0.28 ± 0.03 mg/mL, respectively. Molecular docking analysis illustrated that the high ACEi activity of SP and VDRYF was attributed to effective interaction with the active sites/pockets of ACE by hydrogen bonding, electrostatic force, and hydrophobic interaction. Furthermore, SP and VDRYF could significantly up-regulate nitric oxide (NO) production and down-regulate endothelin-1 (ET-1) secretion in HUVECs after 24 h treatment, but also abolish the negative effect of 0.5 μM norepinephrine (NE) on the generation of NO and ET-1. Therefore, ACEi peptides derived from skipjack tuna (K. pelamis) muscle, especially SP and VDRYF, are beneficial components for functional food against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Shuo-Lei Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
| | - Qian-Bin Luo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Shi-Kun Suo
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China;
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (S.-L.Z.); (S.-K.S.); (Y.-Q.Z.)
- Correspondence: (C.-F.C.); (B.W.); Tel./Fax: +86-580-255-4818 (C.-F.C.); +86-580-255-4781 (B.W.)
| |
Collapse
|
5
|
Dietary Alaska Pollock Protein Attenuates the Experimental Colitis Induced by Dextran Sulfate Sodium via Regulation of Gut Microbiota and Its Metabolites in Mice. Metabolites 2022; 12:metabo12010044. [PMID: 35050166 PMCID: PMC8779829 DOI: 10.3390/metabo12010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Protein derived from fish has not only nutritional properties but also health-promoting properties. Few studies have examined the effect of dietary Alaska pollock protein (APP) on the anticolitis effect reported to be associated with metabolic syndrome (MetS). This study investigated the effect of APP intake on colitis symptoms, gut microbiota, and its metabolites in the experimental colitis mouse model induced by dextran sulfate sodium (DSS). Male C57BL/6J mice were divided into three groups: (1) DSS-untreated mice fed an American Institute of Nutrition (AIN) 93G diet (protein source is casein), (2) DSS-treated mice fed an AIN93G diet, and (3) DSS-treated mice fed an APP diet. After the mice were fed the diets for 21 days, experimental colitis was induced by three cycles of 2% DSS administration for 5 days followed by washouts over the course of 5 days. APP-reduced body weight loss increased the disease activity index, and elevated spleen weight and alleviated colon length shortening and colonic tissue damage. Furthermore, APP altered the structure and composition of the microbiota and short-chain fatty acids in feces. Since APP intake alleviates experimental colitis induced by DSS administration through alterations in the gut microbiota and its metabolites, we deduced that APP would inhibit MetS progression via colitis suppression.
Collapse
|
6
|
Zhang R, Yin L, Chen J, Zhang X. Antioxidant Capacity of Proteins and Hydrolysates from the Liver of Newborn Piglets, and Their Inhibitory Effects on Steatosis in vitro. Food Technol Biotechnol 2021; 58:455-464. [PMID: 33505208 PMCID: PMC7821780 DOI: 10.17113/ftb.58.04.20.6657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Research background Non-alcoholic steatohepatitis is a potentially progressive hepatic disorder that can lead to end-stage liver disease and hepatocellular carcinoma. The inhibitory effects of proteins and hydrolysates from the liver of newborn piglets on hepatic steatosis in oleic acid-induced hepatocellular carcinoma (HepG2) cells were investigated in vitro. Experimental approach The extracted proteins from the liver of newborn piglets were hydrolysed with papain, pepsin, trypsin and Alcalase. Based on the comparison of different enzyme digestion conditions, a protein hydrolysis protocol was established to obtain hydrolysates with lipid-lowering effect. Results and conclusions Trypsin-digested liver protein hydrolysate from newborn piglets exhibited strong antioxidant activity and good inhibitory effects against lipogenesis and cholesterol accumulation in HepG2 cells at the concentration of 150 μg/mL, with a triglyceride decrease of (43±3) % and cholesterol decrease of (31±5) %, compared with model group induced with 0.75 mM oleic acid. The addition of trypsin-digested liver protein hydrolysate from newborn piglets (300 μg/mL) decreased alanine aminotransferase and aspartate aminotransferase activities and increased superoxide dismutase activity. Novelty and scientific contribution This study demonstrated that the trypsin-digested liver protein hydrolysate from newborn piglets has a potential preventive effect against non-alcoholic fatty liver disease in its early stage, and a potential use as the modulator of lipid overaccumulation in form of food supplements.
Collapse
Affiliation(s)
- Ruilin Zhang
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| | - Lasheng Yin
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| | - Jian Chen
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Wshan Road 381, 510640 Guangzhou, PR China
| |
Collapse
|
7
|
Maeda H, Hosomi R, Yokoyama T, Ikeda Y, Nishimoto A, Tanaka G, Shimono T, Kanda S, Nishiyama T, Yoshida M, Fukunaga K. Dietary Alaska pollock protein attenuates liver steatosis and alters gut microbiota in leptin-deficient ob/ob mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Ahmad MI, Ijaz MU, Hussain M, Haq IU, Zhao D, Li C. High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11710-11725. [PMID: 33034193 DOI: 10.1021/acs.jafc.0c02570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The responses of gut microbiota to dietary proteins have been studied previously. However, the effects of dietary proteins supplemented with a high-fat diet (HFD) on the metabolite biomarkers associated with non-alcoholic fatty liver disease (NAFLD) are not well understood. To understand the underlying mechanisms, C57BL/6J mice were fed with either a low-fat diet with casein (LFC) or an HFD with casein (HFC), fish (HFF), or mutton proteins (HFM), and their cecal microbiota and liver metabolites were analyzed. At the phylum level, the HFD group had a relatively higher abundance of Firmicutes compared to the LFC-diet group. At the genus level, the HFF-diet group had the highest abundance of Lactobacillus and Akkermansia compared to the HFC- and HFM-diet groups. Furthermore, mice fed with the HFF diet had significantly reduced levels of hepatic metabolites involved in oxidative stress and bile acid metabolism. Thus, meat proteins in HFD interact in the host to create distinct responses in the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ijaz Ul Haq
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
9
|
Hosomi R, Nishimoto A, Kobayashi T, Ikeda Y, Mitsui M, Shimono T, Kanda S, Nishiyama T, Yoshida M, Fukunaga K. Dietary Alaska pollock protein alters insulin sensitivity and gut microbiota composition in rats. J Food Sci 2020; 85:3628-3637. [PMID: 32885439 DOI: 10.1111/1750-3841.15413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Fish protein is not only nutritional but also promotes health by improving insulin sensitivity and hypercholesterolemia. Few studies have examined the relationship between gut microbiota and the enhanced insulin sensitivity due to the intake of Alaska pollock protein (APP). Hence, we assessed the glycolytic enzyme inhibitory activity of APP in in vitro study and the alteration of blood glucose level in insulin tolerance test (ITT) and glucose tolerance test (GTT) and gut microbiota following APP intake in the in vivo study. In initial experiments, the glycolytic enzyme (α-amylase, α-glucosidase, and sucrase) inhibitory activities of APP and its digest were not drastically altered compared with that of casein and its digests. In further experiments, rats fed an AIN-93G diet containing 20% (w/w) casein or APP for 8 weeks, and the composition of fecal microbiota analyzed by 16S rRNA amplicon sequence analysis. In addition, at 6 and 7 weeks of administration of experimental diet, insulin and glucose tolerance tests were evaluated, respectively. Compared with dietary casein, dietary APP has blood glucose-lowering activity as evident in the ITT and GTT. Moreover, APP group altered the structure of fecal microbiota, and area under the curves of the ITT and GTT and the relative abundance of Blautia, which is associated with glucose metabolism, tended to be positively correlated (P = 0.08 and 0.10, respectively). This study illustrates a novel finding that APP intake could alter the composition of gut microbiota and improve insulin sensitivity. PRACTICAL APPLICATION: Studies in animals and humans have shown that Alaska pollock protein (APP) intake improves insulin sensitivity, allowing the body to utilize blood glucose more effectively, thereby keeping blood sugar levels under control. Microorganisms residing in the human gut are associated with glucose metabolism. This study shows that the relative APP intake alters the composition of these gut microorganisms, more than casein intake and therefore might prevent hyperglycemia and type 2 diabetes.
Collapse
Affiliation(s)
- Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ayano Nishimoto
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Toshihiro Kobayashi
- Faculty of Human Sciences, Kobe Shoin Women's University, 1-2-1, Shinoharaobanoyama-cho, Nada, Kobe, Hyogo, 657-0015, Japan
| | - Yuki Ikeda
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Megumi Mitsui
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| |
Collapse
|