1
|
Liu J, Chen J, Fang S, Sun B, Li Y, Guo Y, Deng M, Zhou D, Liu D, Liu G. Effects of moringa polysaccharides on growth performance, immune function, rumen morphology, and microbial community structure in early-weaned goat kids. Front Vet Sci 2024; 11:1461391. [PMID: 39582887 PMCID: PMC11584012 DOI: 10.3389/fvets.2024.1461391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/25/2024] [Indexed: 11/26/2024] Open
Abstract
The aim of this research was to investigate the effects of adding moringa polysaccharides (MOP) on the growth performance, immune function, rumen tissue morphology, and rumen microbial community in early-weaned goat kids. Twenty-one 7-day-old Leizhou male goat kids weighing (3.05 ± 0.63) kg, were randomly divided into a control group (CON group), a low-dose group (LOW group), and a high-dose group (HIG group). MOP was added to the goat kids' milk replacer (MR) at 0, 0.15, and 0.3% (on dry matter basis),fed until 60 days of age, and four goat kids in each group with body weights close to the mean of each group were selected for slaughter. The results showed that, compared to the CON group, the MOP groups significantly improved final body weight, body measurements, daily weight gain, and feed intake of the early weaned goat kids; significantly reduced the content of propionic acid, butyric acid, valeric acid, and ammoniacal nitrogen; and in addition, the addition of MOP could significantly increase the height of rumen nipple, the content of immunoglobulin G (IgG) in the serum. The HIG group significantly increased rumen pH, rumen muscularis layer thickness, rumen wall thickness, and serum immunoglobulin A (IgA), and immunoglobulin M (IgM). In conclusion, the addition of MOP positively impacted the growth performance, serum immune function, and rumen tissue morphology in early-weaned goat kids.
Collapse
Affiliation(s)
- Jinyang Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinyu Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sicheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Duoen Zhou
- Guangdong Leader Intelligent Agriculture Co., LTD, Qingyuan, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Dong Y, Wang Y, Zhang F, Ma J, Li M, Liu W, Yao J, Sun M, Cao Y, Liu Y, Ying L, Yang Y, Yang Y, She G. Polysaccharides from Gaultheria leucocarpa var. yunnanensis (DBZP) alleviates rheumatoid arthritis through ameliorating gut microbiota. Int J Biol Macromol 2024; 281:136250. [PMID: 39482128 DOI: 10.1016/j.ijbiomac.2024.136250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Gaultheria leucocarpa var. yunnanensis (Dianbaizhu) is a traditional Chinese herb for rheumatoid arthritis (RA). However, its macromolecular components have always been overlooked. This study aimed to investigate the chemical composition and effect on improving RA of polysaccharides from Dianbaizhu (DBZP). The results showed the yield of DBZP was 4.07 % ± 0.03 %, and it was composed of Mannose (6.63 %), ribose (1.33 %), rhamnose (4.53 %), glucuronic acid (2.95 %), galacturonic acid (32.29 %), glucose (13.78 %), galactose (22.97 %), xylose (3.94 %) and arabinose (11.59 %), with a large molecular weight distribution range. DBZP treatment could reduce the paws thickness and arthritis scores of collagen-induced arthritis (CIA) mice, and improve inflammatory cell infiltration, synovial hyperplasia, bone erosion, and deterioration. The abundance of several specific bacteria, such as Lactobacillus, Bacteroides, Alistipes, Mucispirillum, and Candidatus_Saccharimonas, and some metabolites in feces or urine, such as 11beta-hydroxytestosterone, pregnanediol 3-O-glucuronide, p-cresol sulfate and several amino acids and peptides, was also altered. The process of DBZP alleviating RA through gut microbiota involves affecting the digestion and metabolism of carbohydrates and protein, altering sex hormones levels, and regulating intestinal immune function, such as the differentiation and signaling of Th17 cells. These findings suggest that DBZP possesses a protective effect on CIA in mice via modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianling Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengyu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yunzi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Letian Ying
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuqing Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongqi Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Wang J, Li S, Zhang H, Zhang X. A review of Lycium barbarum polysaccharides: Extraction, purification, structural-property relationships, and bioactive molecular mechanisms. Carbohydr Res 2024; 544:109230. [PMID: 39137472 DOI: 10.1016/j.carres.2024.109230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Lycium barbarum L. is of great significance medicinal and edible plant, which is native to N. & Central China. The extensive health benefits of L. barbarum have earned it great respect in traditional medicine for centuries. Lycium barbarum polysaccharides (LBPs) being recognized as one of the most crucial bioactive compounds found within this plant, with it exhibit a diverse range of pharmacological activities and nutritional functions, thereby generating substantial market demand and broad application prospects. To gain a more comprehensive understanding of LBPs, the review discussed the extraction, purification and structural-property relationships of these compounds. In addition, this review provides a comprehensive summary of the potential mechanisms underlying various biological activities attributed to LBPs, including immune modulation, antioxidant effects, neuroprotection, hepatoprotection, and antitumor properties. The application status and the future research directions of LBPs were subsequently presented. This review will establish a robust foundation and serve as an invaluable resource for future research and advancements in the field of LBPs.
Collapse
Affiliation(s)
- Jiao Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Shifeng Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hua Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xin Zhang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
4
|
Hu W, Nie Y, Huang L, Qian D. Contribution of phenolamides to the quality evaluation in Lycium spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118220. [PMID: 38657878 DOI: 10.1016/j.jep.2024.118220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goji berry is a general term for various plant species in the genus Lycium. Goji has long been historically used in traditional Chinese medicines. Goji is a representative tonic medicine that has the effects of nourishing the liver and kidney and benefiting the essence and eyesight. It has been widely used in the treatment of various diseases, including tinnitus, impotence, spermatorrhea and blood deficiency, since ancient times. AIM OF THE REVIEW This study aims to comprehensively summarize the quality evaluation methods of the main compounds in goji, as well as the current research status of the phenolamides in goji and their pharmacological effects, to explore the feasibility of using phenolamides as quality control markers and thus improve the quality and efficacy in goji. MATERIALS AND METHODS Relevant literature from PubMed, Web of Science, Science Direct, CNKI and other databases was comprehensively collected, screened and summarized. RESULTS According to the collected literature, the quality evaluation markers of goji in the Pharmacopoeia of the People's Republic of China are Lycium barbarum polysaccharide (LBP) and betaine. As a result of its structure complexity, only the total level of LBP can be determined, while betaine is not prominent in the pharmacological action of goji and lacks species distinctiveness. Neither of them can well explain the quality of goji. KuA and KuB are commonly used as quality evaluation markers of the Lycii cortex because of their high levels and suitable pharmacological activity. Goji is rich in polyphenols, carotenoids and alkaloids. Many studies have used the above compounds to establish quality evaluation methods but the results have not been satisfactory. Phenolamides have often been neglected in previous studies because of their low single compound levels and high separation difficulty. However, in recent years, the favorable pharmacological activities of phenolamides have been gradually recognized, and studies on goji phenolamides are greatly increasing. In addition, phenolamides have higher species distinctiveness than other compounds and can be combined with other compounds to better evaluate the quality of goji to improve its average quality. CONCLUSIONS The phenolamides in the goji are rich and play a key role in antioxidation, anti-inflammation, neuroprotection and immunomodulation. As a result of their characteristics, it is suitable to evaluate the quality by quantitative analysis of multi-components by single-marker and fingerprint. This method can be combined with other techniques to improve the quality evaluation system of goji, which lays a foundation for their effectiveness and provides a reference for new quality evaluation methods of similar herbal medicines.
Collapse
Affiliation(s)
- Wenxiao Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yinglan Nie
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Zhang Z, Lu W, Liu P, Li M, Ge X, Yu B, Wu Z, Liu G, Ding N, Cui B, Chen X. Microbial modifications with Lycium barbarum L. oligosaccharides decrease hepatic fibrosis and mitochondrial abnormalities in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155068. [PMID: 37690228 DOI: 10.1016/j.phymed.2023.155068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Lycium barbarum L. is a typical Chinese herbal and edible plant and are now consumed globally. Low molecular weight L. barbarum L. oligosaccharides (LBO) exhibit better antioxidant activity and gastrointestinal digestibility in vitro than high molecular weight polysaccharides. However, the LBO on the treatment of liver disease is not studied. PURPOSE Modification of the gut microbial ecosystem by LBO is a promising treatment for liver fibrosis. STUDY DESIGN AND METHODS Herein, LBO were prepared and characterized. CCl4-treated mice were orally gavaged with LBO and the effects on hepatic fibrosis and mitochondrial abnormalities were evaluated according to relevant indicators (gut microbiota, faecal metabolites, and physiological and biochemical indices). RESULTS The results revealed that LBO, a potential prebiotic source, is a pyranose cyclic oligosaccharide possessing α-glycosidic and β-glycosidic bonds. Moreover, LBO supplementation restored the configuration of the bacterial community, enhanced the proliferation of beneficial species in the gastrointestinal tract (e.g., Bacillus, Tyzzerella, Fournierella and Coriobacteriaceae UCG-002), improved microbial metabolic alterations (i.e., carbohydrate metabolism, vitamin metabolism and entero-hepatic circulation), and increased antioxidants, including doxepin, in mice. Finally, LBO administration reduced serum inflammatory cytokine and hepatic hydroxyproline levels, improved intestinal and hepatic mitochondrial functions, and ameliorated mouse liver fibrosis. CONCLUSION These findings indicate that LBO can be utilized as a prebiotic and has a remarkable ability to mitigate liver fibrosis.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjia Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Mengjie Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xinyi Ge
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guimei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Xiao Chen
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250353, China.
| |
Collapse
|
6
|
Liang X, Liu M, Guo S, Zhang F, Cui W, Zeng F, Xu M, Qian D, Duan J. Structural elucidation of a novel arabinogalactan LFP-80-W1 from Lycii fructus with potential immunostimulatory activity. Front Nutr 2023; 9:1067836. [PMID: 36687689 PMCID: PMC9846619 DOI: 10.3389/fnut.2022.1067836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Polysaccharides are the most important effective components of Lycii fructus, which has a variety of biological activities and broad application prospects in the fields of medicine and food. In this study, we reported a novel arabinogalactan LFP-80-W1 with potential immunostimulatory activity. LFP-80-W1 was a continuous symmetrical single-peak with an average molecular weight of 4.58 × 104 Da and was mainly composed of arabinose and galactose. Oligosaccharide sequencing analyses and NMR data showed that the LFP-80-W1 domain consists of a repeated 1,6-linked β-Galp main chain with branches arabinoglycan and arabinogalactan at position C-3. Importantly, we found that LFP-80-W1 could activate the MAPK pathway and promote the release of NO, IL-6, and TNF-α cytokines in vitro. Therefore, our findings suggest that the homogeneous arabinogalactan from Lycii fructus, can be used as a natural immunomodulator.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,*Correspondence: Sheng Guo,
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Wanchen Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Fei Zeng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mingming Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Ningxia Innovation Center of Goji R&D, Yinchuan, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Jinao Duan,
| |
Collapse
|
7
|
Liu H, Zhang Z, Li J, Liu W, Warda M, Cui B, Abd El-Aty AM. Oligosaccharides derived from Lycium barbarum ameliorate glycolipid metabolism and modulate the gut microbiota community and the faecal metabolites in a type 2 diabetes mouse model: metabolomic bioinformatic analysis. Food Funct 2022; 13:5416-5429. [PMID: 35475434 DOI: 10.1039/d1fo02667d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we assessed the effects of Lycium barbarum oligosaccharides (LBO) on the intestinal microenvironment of a type 2 diabetes (T2D) mouse model through gut microbiome and metabolomics analysis. We set high (300 mg kg-1), medium (200 mg kg-1), and low (100 mg kg-1) doses of LBO for intervention once a day for 4 weeks. The results showed that the intervention effect of the medium-dose group was the most significant. It reduced the symptoms of hyperglycemia, inflammation, insulin resistance, and lipid accumulation in the T2D mouse model. It restored the structure of damaged tissues and cells, such as the pancreas, liver, and kidneys. LBO increased the relative abundance of beneficial bacteria, such as Lactobacillus, Bacteroides, Prevotella, and Akkermansia, and maintained intestinal barrier integrity. The faecal metabolic map showed that the contents of glycogen amino acids, such as proline, serine, and leucine, increased. The contents of cholic, capric, and dodecanoic acid decreased. In summary, we may suggest that LBO can be used as a prebiotic for treating T2D.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Jianpeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - Wei Liu
- Yucheng People's Hospital, Dezhou, 251200, China
| | - Mohamad Warda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China. .,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza-12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
8
|
Vidović BB, Milinčić DD, Marčetić MD, Djuriš JD, Ilić TD, Kostić AŽ, Pešić MB. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants (Basel) 2022; 11:248. [PMID: 35204130 PMCID: PMC8868247 DOI: 10.3390/antiox11020248] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Goji berries have long been used for their nutritional value and medicinal purposes in Asian countries. In the last two decades, goji berries have become popular around the world and are consumed as a functional food due to wide-range bioactive compounds with health-promoting properties. In addition, they are gaining increased research attention as a source of functional ingredients with potential industrial applications. This review focuses on the antioxidant properties of goji berries, scientific evidence on their health effects based on human interventional studies, safety concerns, goji berry processing technologies, and applications of goji berry-based ingredients in developing functional food products.
Collapse
Affiliation(s)
- Bojana B. Vidović
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Danijel D. Milinčić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana D. Marčetić
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Jelena D. Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Tijana D. Ilić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia;
| | - Aleksandar Ž. Kostić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| | - Mirjana B. Pešić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (D.D.M.); (A.Ž.K.); (M.B.P.)
| |
Collapse
|
9
|
Wang H, Ke L, Ding Y, Rao P, Xu T, Han H, Zhou J, Ding W, Shang X. Effect of calcium ions on rheological properties and structure of Lycium barbarum L. polysaccharide and its gelation mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Wang Y, Sun M, Jin H, Yang J, Kang S, Liu Y, Yang S, Ma S, Ni J. Effects of Lycium barbarum Polysaccharides on Immunity and the Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice. Front Microbiol 2021; 12:701566. [PMID: 34421857 PMCID: PMC8377584 DOI: 10.3389/fmicb.2021.701566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanism of immunoregulation by Lycium barbarum polysaccharides (LBPs) was assessed by studying the effect of LBP on the immunity and the gut microbiota. LBP isolated and purified in this study was composed of nine monosaccharides, with an Mw 1,207 kDa. LBP showed immunomodulatory activity in cyclophosphamide (Cy)-treated mice by restoring the damaged immune organs and adjusting the T lymphocyte subsets. We also found that LBP increased the diversity of the gut microbiota and the relative abundances of bacteria, such as Rickenellaceae, Prevotellaceae, Bifidobacteriaceae, and so on, which were positively associated with immune traits. In addition, Caco2 cells model was used to explore the intestinal absorption of LBP. Results showed that LBP was hardly absorbed in the intestine, which suggesting that most LBP may interact with gut microbiota. These findings suggest that the immune response induced by LBP is associated with the regulation of the gut microbiota.
Collapse
Affiliation(s)
- Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Jin
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianbo Yang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Shuai Kang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Synergistic immunomodulatory effect of complex polysaccharides from seven herbs and their major active fractions. Int J Biol Macromol 2020; 165:530-541. [DOI: 10.1016/j.ijbiomac.2020.09.199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
|
12
|
Busato B, de Almeida Abreu EC, de Oliveira Petkowicz CL, Martinez GR, Rodrigues Noleto G. Pectin from Brassica oleracea var. italica triggers immunomodulating effects in vivo. Int J Biol Macromol 2020; 161:431-440. [DOI: 10.1016/j.ijbiomac.2020.06.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
|
13
|
Integrated omics profiling of dextran sodium sulfate-induced colitic mice supplemented with Wolfberry ( Lycium barbarum). NPJ Sci Food 2020; 4:5. [PMID: 32258419 PMCID: PMC7109062 DOI: 10.1038/s41538-020-0065-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
We used a multi-omics profiling approach to investigate the suppressive effects of 2% Wolfberry (WOL)-enriched diets on dextran sodium sulfate (DSS)-induced colitis in mice. It was observed that in mice fed the WOL diet, the disease activity index, colon shortening, plasma concentrations of matrix metalloproteinase-3 and relative mesenteric fat weight were significantly improved as compared to the DSS group. Results from colon transcriptome and proteome profiles showed that WOL supplementation significantly ameliorated the expression of genes and proteins associated with the integrity of the colonic mucosal wall and colonic inflammation. Based on the hepatic transcriptome, proteome and metabolome data, genes involved in fatty acid metabolism, proteins involved in inflammation and metabolites related to glycolysis were downregulated in WOL mice, leading to lowered inflammation and changes in these molecules may have led to improvement in body weight loss. The integrated nutrigenomic approach thus revealed the molecular mechanisms underlying the ameliorative effect of whole WOL fruit consumption on inflammatory bowel disease.
Collapse
|
14
|
Immunomodulatory Effects of Lycium barbarum Polysaccharide Extract and Its Uptake Behaviors at the Cellular Level. Molecules 2020; 25:molecules25061351. [PMID: 32188121 PMCID: PMC7145302 DOI: 10.3390/molecules25061351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
Lycium barbarum L. is a widely used functional food and medicinal herb in Asian countries. L. barbarium polysaccharides (LBP) are considered as one of the major medicinal components of L. barbarium fruit and exhibits a wide range of biological activities. Here, we investigated the immunomodulatory effects of LBP and its uptake behaviors at the cellular level. LBP was prepared by water extraction and ethanol precipitation, and divided into two fractions based on the molecular weight distribution by ultrafiltration (LBP > 10 kDa and LBP < 10 kDa). The physicochemical properties of LBP and LBP fractions were well characterized. The LBP > 10 kDa fraction greatly enhanced the viability of macrophages RAW264.7 cells and induced cell polarization, but had weak effects to other tested tumor cell lines and normal cell line. This fraction could regulate the production of NO, TNF-α, IL-6 and ROS in RAW264.7 cells, suggesting both pro-inflammatory and anti-inflammatory effects. The dye-labeled LBP could be internalized into all tested cell lines and accumulated in lysosomes. The internalization of LBP in RAW264.7 cells is mainly through the clathrin-mediated endocytosis pathway. The Caco-2 intestinal transport experiment demonstrated that the dye labeled LBP could be transported through the Caco-2 cell monolayer (mimic intestinal epithelium) through clathrin-mediated endocytosis. These results demonstrate the immunomodulatory effects of LBP and its effective uptake by macrophages and intestine.
Collapse
|
15
|
Lin S, Li HY, Yuan Q, Nie XR, Zhou J, Wei SY, Du G, Zhao L, Wang SP, Zhang Q, Chen H, Qin W, Wu DT. Structural characterization, antioxidant activity, and immunomodulatory activity of non-starch polysaccharides from Chuanminshen violaceum collected from different regions. Int J Biol Macromol 2019; 143:902-912. [PMID: 31715239 DOI: 10.1016/j.ijbiomac.2019.09.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
Abstract
Chuanminshen violaceum has been used as an important traditional Chinese medicine and a popular tonic food in China. Polysaccharides are considered the major bioactive components in C. violaceum. In this study, in order well understand the chemical structures and bioactivities of non-starch polysaccharides in C. violaceum (CVPs), the physicochemical structures, antioxidant activities, and immunomodulatory activities of CVPs in C. violaceum collected from different regions of China were investigated and compared. Results showed that the constituent monosaccharides and Fourier transform infrared spectra of CVPs in C. violaceum collected from different regions were similar. However, their molar ratios of constituent monosaccharides, molecular weights, and contents of uronic acids were different. Furthermore, CVPs exerted remarkable antioxidant activities (ABTS and nitric oxide radical scavenging capacities) and immunomodulatory activities (promoted production of nitric oxide, IL-6, and TNF-α from RAW 264.7 macrophages in vitro). Meanwhile, the antioxidant and immunomodulatory activities of CVPs extracted from C. violaceum also varied by cultivated regions. Moreover, results indicated that the antioxidant and immunomodulatory activities of CVPs were closely correlated to their α-1,4-d-galactosiduronic linkages. Results are helpful for better understanding of the structure-bioactivity relationships of CVPs, and beneficial for the improvement of their applications in pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Shang Lin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hong-Yi Li
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Qin Yuan
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Xi-Rui Nie
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Jia Zhou
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Si-Yu Wei
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Gang Du
- Sichuan Provincial Institute for Food and Drug Control, Chengdu, Sichuan, China
| | - Li Zhao
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing Zhang
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Hong Chen
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Wen Qin
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
16
|
Wang Y, Jin H, Dong X, Yang S, Ma S, Ni J. Quality evaluation of Lycium barbarum (wolfberry) from different regions in China based on polysaccharide structure, yield and bioactivities. Chin Med 2019; 14:49. [PMID: 31719838 PMCID: PMC6839155 DOI: 10.1186/s13020-019-0273-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
Background Lycium barbarum (wolfberry) has been widely cultivated in China, particularly in northwest regions. However, the fruit size and taste of L. barbarum from different habitats are quite different. Traditionally, only the fruit of L. barbarum produced in Ningxia province is recorded as an authentic herb, although the detailed mechanism responsible for this remains obscure. Polysaccharides are considered major active ingredients in L. barbarum which is crucial for its quality evaluation. Methods In this study, we assessed the yield, monosaccharide composition, molecular weight, and conformation of L. barbarum polysaccharides (LBPs) collected from different regions of China. The antioxidant and immune activities of LBPs were also determined as its quality indicator. Results Our results showed that the similarity values of monosaccharide composition were larger than 0.926, and the Mw of the two fractions (peaks 1–2) in LBPs were ranging from 1.36 × 106 to 2.01 × 106 (peak 1), and 6.85 × 104 to 10.30 × 104 (peak 2) which indicated that the structure of LBPs were similar. In addition, results showed that there was no significant difference in antioxidant and immune activities of nine LBPs from different regions. However, the yield of LBPs from Qinghai Province (low atmospheric temperature, high altitude) was significantly lower (p < 0.05) than those collected from Xinjiang and Ningxia province. Conclusions These data suggested that the L. barbarum produced in Ningxia and Xinjiang maybe more suitable as materials for medicines and functional foods. This study also provides a reference for improving the quality control standard of LBPs.
Collapse
Affiliation(s)
- Ying Wang
- 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chaoyang District, Beijing, 100102 China.,2Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Hongyu Jin
- 2Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Xiaoxv Dong
- 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chaoyang District, Beijing, 100102 China
| | - Shuang Yang
- 3School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Shuangcheng Ma
- 2Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2 Tiantan Xili, Dongcheng District, Beijing, 100050 China
| | - Jian Ni
- 1School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chaoyang District, Beijing, 100102 China
| |
Collapse
|
17
|
Lycium barbarum polysaccharides attenuate rat anti-Thy-1 glomerulonephritis through mediating pyruvate dehydrogenase. Biomed Pharmacother 2019; 116:109020. [DOI: 10.1016/j.biopha.2019.109020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023] Open
|
18
|
Effect of Radix Hedysari Polysaccharide on Glioma by Cell Cycle Arrest and TNF-α Signaling Pathway Regulation. INT J POLYM SCI 2019. [DOI: 10.1155/2019/2725084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective. To investigate the possible development of radix hedysari polysaccharide as an antiglioma drug, we studied the effect of radix hedysari polysaccharide on glioma cells in vitro and the growth of glioma in nude mice and on the phagocytosis of macrophages in nude mice with glioma. Methods. The effect of radix hedysari polysaccharide on the growth of glioma was studied based on U251 cell line in vitro. The effect of radix hedysari polysaccharide on the growth of glioma was studied in vivo. The growth inhibition rate of radix hedysari polysaccharide on U251 cell line was determined by the MTT assay. The cell cycle of U251 was analyzed by flow cytometry. The expression of cytokines in U251 cells and tumor tissues was detected using PCR. The phagocytosis of macrophages in the serum of glioma nude mice was detected by Giemsa staining. TNF-α signaling pathway proteins in the serum of glioma nude mice were detected by ELISA. Results. Radix hedysari polysaccharide inhibited the growth of U251 cells, induced apoptosis in G1 phase by cell cycle arrest, and facilitated apoptosis in glioma mice by regulating cell cycle. Mice injected with radix hedysari polysaccharide showed delayed tumor growth and grew slowly. Radix hedysari polysaccharide enhanced the phagocytosis of macrophages in glioma nude mice. Radix hedysari polysaccharides could inhibit tumor development by regulating the immune function of tumor mice and affecting the TNF-α signaling pathway. Conclusion. Radix hedysari polysaccharide can effectively inhibit the growth of glioma and affect the TNF-α signaling pathway, thus playing an antiglioma role.
Collapse
|
19
|
Lu Y, Guo S, Zhang F, Yan H, Qian DW, Wang HQ, Jin L, Duan JA. Comparison of Functional Components and Antioxidant Activity of Lycium barbarum L. Fruits from Different Regions in China. Molecules 2019; 24:molecules24122228. [PMID: 31207958 PMCID: PMC6632000 DOI: 10.3390/molecules24122228] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
The fruit of Lycium barbarum L. (FLB) has been used as medicines and functional foods for more than 2000 years in East Asia. In this study, carotenoid, phenolic, flavonoid, and polysaccharide contents as well as the antioxidant activities of FLB from 13 different regions in China from a total of 78 samples were analyzed. The results showed that total carotenoid contents ranged from 12.93 to 25.35 mg β-carotene equivalents/g DW. Zeaxanthin dipalmitate was the predominant carotenoid (4.260–10.07 mg/g DW) in FLB. The total phenolic, total flavonoid, and total polysaccharide contents ranged from 6.899 to 8.253 mg gallic acid equivalents/g DW, 3.177 to 6.144 mg rutin equivalents/g DW, and 23.62 to 42.45 mg/g DW, respectively. Rutin content ranged from 0.1812 to 0.4391 mg/g DW, and ferulic acid content ranged from 0.0994 to 0.1726 mg/g DW. All of these FLB could be divided into two clusters with PCA analysis, and both individual carotenoids and total carotenoid contents could be used as markers for regional characterization. The phenolic components were the main substance for the antioxidant activity of FLB. Considering the functional component and antioxidant activities, FLB produced in Guyuan of Ningxia was the closest to Daodi herbs (Zhongwei of Ningxia), which is commercially available high quality FLB. The results of this study could provide guidance for comprehensive applications of FLB production in different regions.
Collapse
Affiliation(s)
- Youyuan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Han-Qing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750021, China.
| | - Ling Jin
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
You J, Chang Y, Zhao D, Zhuang J, Zhuang W. A Mixture of Functional Complex Extracts from Lycium barbarum and Grape Seed Enhances Immunity Synergistically In Vitro and In Vivo. J Food Sci 2019; 84:1577-1585. [PMID: 31120637 DOI: 10.1111/1750-3841.14611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 11/29/2022]
Abstract
A mixture of multiple ingredients is often more effective than the individual ingredients. The functions of Lycium barbarum polysaccharide (LBP) glycoconjugate and grape seed procyanidins (GSP) are widely known. Here, we investigated the synergistic immune-enhancing activity of LBP and GSP. Atomic force microscopy results suggested that the mixture of LBP and GSP exhibited circular structure unlike LBP alone, and the addition of polyphenols may change the spatial conformation of the sugar chain. The changes in the structure were related to the synergistic effect of the two functional agents on immune recovery. In vitro, the proliferation rate of splenocytes was higher in LBP + GSP group (64.16%), rather than the sum of LBP group (13.01%) and GSP group (43.61%) individually used. This synergistical proliferation of splenocytes may be correlated to the increasing intracellular free calcium levels. Furthermore, the mixture significantly enhanced the immunity in vivo, as evident from the recovery of peripheral white blood cell counts in LBP + GSP group (18.535 × 109 /L) to normal group levels (18.115 × 109 /L) and higher B cell proliferation than normal group (P < 0.05). These results highlight the immune-enhancing activity of the combination of LBP and GSP associated with the structural changes, which may facilitate the development of functional foods with fewer resources but enhanced activities. PRACTICAL APPLICATION: The synergistic effects of LBP and GSP on immunomodulatory were better than the sum of the effects of the individual agents both in vitro and in vivo. Our results may provide a research-based support for the development of related functional products and an insight into the production of food resources with a fewer but more effective functional agents for better results.
Collapse
Affiliation(s)
- Jiaqi You
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, 130 Meilong Road, Xuhui Qu, Shanghai, 200237, China
| | - Yaning Chang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, 130 Meilong Road, Xuhui Qu, Shanghai, 200237, China
| | - Di Zhao
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, 130 Meilong Road, Xuhui Qu, Shanghai, 200237, China
| | - Jiafeng Zhuang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, 130 Meilong Road, Xuhui Qu, Shanghai, 200237, China
| | - Wei Zhuang
- The State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China Univ. of Science and Technology, 130 Meilong Road, Xuhui Qu, Shanghai, 200237, China
| |
Collapse
|
21
|
Wu DT, Guo H, Lin S, Lam SC, Zhao L, Lin DR, Qin W. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|