1
|
Fan Z, Chen J, Wei J, Yang Z, Xiao H, Liu H. Improvement effect of compound Ento-PB on oxazolone-induced ulcerative colitis in rats. Acta Cir Bras 2024; 39:e395524. [PMID: 39230095 PMCID: PMC11368207 DOI: 10.1590/acb395524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE To investigate the impact of the Chinese medicine compound Ento-PB on oxazolone (OXZ)-induced ulcerative colitis (UC) in rats. METHODS UC rats induced by OXZ were treated with Ento-PB. The damage to the colon was assessed using several measures, including the disease activity index (DAI), colon length, colon weight/length ratio, colonic mucosal damage index, and histological score. The levels of interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-13 (IL-13), epidermal growth factor (EGF), inducible nitric oxide synthase, and total nitric oxide synthase (tNOS) in rat serum, as well as the levels of tumor necrosis factor-α (TNF-α) and myeloperoxidase (MPO) in rat colon tissue, were determined using enzyme-linked immunosorbent assay and conventional kits. RESULTS After being treated with Ento-PB, the DAI score and macroscopic lesion score of OXZ-induced UC rats were significantly reduced. Ento-PB prevented the shortening of rat colons, reduced the ratio of colon weight to length, and improved colon tissue lesions. Meanwhile, Ento-PB could significantly inhibit the activities of proinflammatory cytokines TNF-α, IL-13, and MPO, as well as tNOS and iNOS, while upregulating the expression of anti-inflammatory cytokines IL-4 and IL-10. Moreover, a significant increase in the expression level of EGF was observed in UC rats treated with Ento-PB, indicating that Ento-PB could enhance the repair of damaged intestinal epithelial tissue. CONCLUSIONS Ento-PB demonstrates significant anti-UC activities in OXZ-induced UC rats by regulating the expression levels of inflammatory factors and promoting the repair of colon tissue. This study provides scientific evidence to support the further development of Ento-PB.
Collapse
Affiliation(s)
- Zhi Fan
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
| | - Jinhu Chen
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
| | - Jia Wei
- Dali University – National-Local Joint Engineering Research Center of Entomoceutics – Dali – China
| | - ZhiBin Yang
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| | - Huai Xiao
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| | - Heng Liu
- Dali University – Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical – Dali – China
- Dali University – Engineering Research Center for Development and Comprehensive Utilization of Entomoceutics – Dali – China
| |
Collapse
|
2
|
Bu L, Li Y, Wang C, Jiang Y, Suo H. Preventive effect of Lacticaseibacillus rhamnosus 2016SWU.05.0601 and its postbiotic elements on dextran sodium sulfate-induced colitis in mice. Front Microbiol 2024; 15:1342705. [PMID: 38374921 PMCID: PMC10876090 DOI: 10.3389/fmicb.2024.1342705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Microbial-based therapies are one of the hotspots in the field of ulcerative colitis research. The lactic acid bacteria and their postbiotics occupy a key position in microbial therapies, however, the mechanism by which they alleviate ulcerative colitis in mice is unknown. We investigated the effects of Lacticaseibacillus rhamnosus 2016SWU.05.0601 (Lr-0601) and its postbiotics on male Kunming mice with dextran sulfate sodium salt (DSS)-induced ulcerative colitis (UC). The results showed that Lr-0601 significantly alleviated the deterioration of UC and restored the expression of intestinal mechanical barrier proteins. In addition, Lr-0601 significantly reduced the expression of inflammatory cytokines in the body and regulated the expression of key regulatory genes of the NF-κB-iNOS/COX-2 signaling pathway in colon tissues to a large extent. Our results suggest that supplementation with Lr-0601 and its postbiotics can effectively prevent DSS-induced UC and have a beneficial effect on intestinal health, which also provides new insights and research bases for the prevention as well as the treatment of ulcerative colitis and other diseases related to intestinal barrier dysfunction and other diseases.
Collapse
Affiliation(s)
- Linli Bu
- College of Food Science, Southwest University, Chongqing, China
| | - Yang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Modern “Chuan Cai Yu Wei” Food Industry Innovation Research Institute, Chongqing, China
| | - Yuhang Jiang
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- Modern “Chuan Cai Yu Wei” Food Industry Innovation Research Institute, Chongqing, China
| |
Collapse
|
3
|
Liu Y, Liu G, Fang J. Progress on the mechanisms of Lactobacillus plantarum to improve intestinal barrier function in ulcerative colitis. J Nutr Biochem 2024; 124:109505. [PMID: 37890709 DOI: 10.1016/j.jnutbio.2023.109505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Ulcerative colitis (UC) is a chronic, non-specific inflammatory sickness of the intestinal tract, chiefly implicating the rectum and colon, which is characterized by chronic or subacute diarrhea, mucopurulent stools, and abdominal pain. The pathogeny of UC is still uncertain, and it is thought that multiple factors interact to cause the disease, such as environment, genetics, gut microbes, and immunity. Injuring the intestinal barrier is one of the most significant features of UC and includes mechanical, chemical, immune, and biological barriers. Plenty of research has shown that probiotics, as profitable bacteria in the gut, can play a prominent role in the treatment of UC by improving gut barrier function and modulating gut immunity. Lactobacillus plantarum (L. plantarum), a common probiotic, has made outstanding contributions to food and medicine, and many studies in recent years have shown that L. plantarum has great preventive and therapeutic effects on ulcerative colitis and restores the intestinal barrier. This paper reviews the mechanisms of L. plantarum for improving the intestinal barrier function of UC organisms, mainly including regulating the immune response, inhibiting oxidative stress, raising the expression of tight junction (TJ) proteins, promoting the formation of mucin, improving the composition of gut flora, and raising the levels of short-chain fatty acids (SCFAs), which offers some help for the clinical therapy of UC.
Collapse
Affiliation(s)
- Yihui Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Hunan Agricultural University, 1 Nongda Road, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Lv MY, Jin LL, Sang XQ, Shi WC, Qiang LX, Lin QY, Jin SD. Abhd2, a Candidate Gene Regulating Airway Remodeling in COPD via TGF-β. Int J Chron Obstruct Pulmon Dis 2024; 19:33-50. [PMID: 38197032 PMCID: PMC10775803 DOI: 10.2147/copd.s440200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024] Open
Abstract
Purpose The typical characteristic of COPD is airway remodeling, affected by environmental and genetic factors. However, genetic studies on COPD have been limited. Currently, the Abhd2 gene is found to play a critical role in maintaining alveolar architecture and stability. The research aims to investigate the predictive value of Abhd2 for airway remodeling in COPD and its effect on TGF-β regulation. Methods In humans, Abhd2 protein was obtained from peripheral blood monocytes. Peripheral blood TGF-β, pulmonary surfactant proteins (SPs), metalloproteinases, inflammatory indicators (WBC, NEU, NLR, EOS, CRP, PCT, D-Dimer), chest CT (airway diameter and airway wall thickness), pulmonary function, and blood gas analysis were used to assess airway remodeling. In animals, Abhd2 deficient mice (Abhd2Gt/Gt) using gene trapping and C57BL6 mice were injected intraperitoneally with CSE to construct COPD models. HE staining, Masson staining and immunohistochemistry were used to observe the pathological changes of airway in mice, and RT-PCR, WB, ELISA and immunofluorescence were used to detect the expression of secreted proteins and EMT markers. Results COPD patients with worse pulmonary function and higher airway remodeling-related inflammatory factors had lower Abhd2 protein expression. Moreover, indicators followed the same trend for COPD patients grouped by prognosis (Group A vs Group B). Serum TGF-β was negatively correlated with Abhd2 protein expression, FEV1/FVC, FEV1, and FEV1% PRED. In mice, Abhd2 depletion promoted deposition of TGF-β, leading to more pronounced emphysema, airway thickening, increased alveolar macrophage infiltration, decreased AECII number and SPs, and EMT phenomenon. Conclusion Downregulation of Abhd2 can promote airway remodeling in COPD by modulating repair after injury and EMT via TGF-β. This study suggests that Abhd2 may serve as a biomarker for assessing airway remodeling and guiding prognosis in COPD.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin, 150001, People’s Republic of China
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Ling-Ling Jin
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
- Department of Critical Care medicine, the Second Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an, Shaanxi, China
| | - Xi-Qiao Sang
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Wen-Chao Shi
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Li-Xia Qiang
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| | - Qing-Yan Lin
- Department of Respiratory Medicine, Heilongjiang Provincial Hospital, Harbin, 150001, People’s Republic of China
| | - Shou-De Jin
- Department of Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, People’s Republic of China
| |
Collapse
|
5
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
6
|
Li S, Xu K, Cheng Y, Chen L, Yi A, Xiao Z, Zhao X, Chen M, Tian Y, Meng W, Tang Z, Zhou S, Ruan G, Wei Y. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease. Front Microbiol 2023; 14:1188455. [PMID: 37389342 PMCID: PMC10303177 DOI: 10.3389/fmicb.2023.1188455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacological treatment of inflammatory bowel disease (IBD) is inefficient and difficult to discontinue appropriately, and enterobacterial interactions are expected to provide a new target for the treatment of IBD. We collected recent studies on the enterobacterial interactions among the host, enterobacteria, and their metabolite products and discuss potential therapeutic options. Intestinal flora interactions in IBD are affected in the reduced bacterial diversity, impact the immune system and are influenced by multiple factors such as host genetics and diet. Enterobacterial metabolites such as SCFAs, bile acids, and tryptophan also play important roles in enterobacterial interactions, especially in the progression of IBD. Therapeutically, a wide range of sources of probiotics and prebiotics exhibit potential therapeutic benefit in IBD through enterobacterial interactions, and some have gained wide recognition as adjuvant drugs. Different dietary patterns and foods, especially functional foods, are novel therapeutic modalities that distinguish pro-and prebiotics from traditional medications. Combined studies with food science may significantly improve the therapeutic experience of patients with IBD. In this review, we provide a brief overview of the role of enterobacteria and their metabolites in enterobacterial interactions, discuss the advantages and disadvantages of the potential therapeutic options derived from such metabolites, and postulate directions for further research.
Collapse
Affiliation(s)
- Siyu Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Kan Xu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Basic Medicine College of Army Medical University, Army Medical University, Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ailin Yi
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuefei Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Minjia Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuting Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Meng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zongyuan Tang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuhong Zhou
- Department of Laboratory Animal Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Paulino do Nascimento LC, Lacerda DC, Ferreira DJS, de Souza EL, de Brito Alves JL. Limosilactobacillus fermentum, Current Evidence on the Antioxidant Properties and Opportunities to be Exploited as a Probiotic Microorganism. Probiotics Antimicrob Proteins 2022; 14:960-979. [PMID: 35467236 DOI: 10.1007/s12602-022-09943-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2022] [Indexed: 12/14/2022]
Abstract
The unbalance in the production and removal of oxygen-reactive species in the human organism leads to oxidative stress, a physiological condition commonly linked to the occurrence of cancer, neurodegenerative, inflammatory, and metabolic disorders. The implications of oxidative stress in the gut have been associated with gut microbiota impairments and gut dysbiosis. Some lactobacilli strains have shown an efficient antioxidant system capable of protecting against oxidative stress and related-chronic diseases. Recently, in vitro and experimental studies and some clinical trials have demonstrated the efficacy of the administration of various Limosilactobacillus fermentum strains to modulate beneficially the host antioxidant system resulting in the amelioration of a variety of systemic diseases phenotypes. This review presents and discusses the currently available studies on identifying L. fermentum strains with anti-oxidant properties, their sources, range of the administered doses, and duration of the intervention in experiments with animals and clinical trials. This review strives to serve as a relevant and well-cataloged reference of L. fermentum strains with capabilities of inducing anti-oxidant effects and health-promoting benefits to the host, envisaging their broad applicability to disease control.
Collapse
Affiliation(s)
| | - Diego Cabral Lacerda
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, Campus I - João Pessoa, Paraíba, Brazil.
| |
Collapse
|
8
|
Cordeiro BF, Alves JL, Belo GA, Oliveira ER, Braga MP, da Silva SH, Lemos L, Guimarães JT, Silva R, Rocha RS, Jan G, Le Loir Y, Silva MC, Freitas MQ, Esmerino EA, Gala-García A, Ferreira E, Faria AMC, Cruz AG, Azevedo V, do Carmo FLR. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front Microbiol 2021; 12:623920. [PMID: 33737918 PMCID: PMC7960676 DOI: 10.3389/fmicb.2021.623920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) constitute disturbances of gastrointestinal tract that cause irreversible changes in the structure and function of tissues. Ulcerative colitis (UC), the most frequent IBD in the population, is characterized by prominent inflammation of the human colon. Functional foods containing probiotic bacteria have been studied as adjuvants to the treatment or prevention of IBDs. The selected probiotic strain Lactococcus lactis NCDO 2118 (L. lactis NCDO 2118) exhibits immunomodulatory effects, with promising results in UC mouse model induced by dextran sodium sulfate (DSS). Additionally, cheese is a dairy food that presents high nutritional value, besides being a good delivery system that can be used to improve survival and enhance the therapeutic effects of probiotic bacteria in the host. Therefore, this work investigated the probiotic therapeutic effects of an experimental Minas Frescal cheese containing L. lactis NCDO 2118 in DSS-induced colitis in mice. During colitis induction, mice that consumed the probiotic cheese exhibited reduced in the severity of colitis, with attenuated weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score. Moreover, probiotic cheese administration increased gene expression of tight junctions’ proteins zo-1, zo-2, ocln, and cln-1 in the colon and increase IL-10 release in the spleen and lymph nodes. In this way, this work demonstrates that consumption of probiotic Minas Frescal cheese, containing L. lactis NCDO 2118, prevents the inflammatory process during DSS-induced colitis in mice, opening perspectives for the development of new probiotic functional foods for personalized nutrition in the context of IBD.
Collapse
Affiliation(s)
- Bárbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana L Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna A Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina P Braga
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Jonas T Guimarães
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon Silva
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Marcia Cristina Silva
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Mônica Q Freitas
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Erick A Esmerino
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Alfonso Gala-García
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Maria C Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriano G Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| |
Collapse
|
9
|
Spangler JR, Caruana JC, Medintz IL, Walper SA. Harnessing the potential of Lactobacillus species for therapeutic delivery at the lumenal-mucosal interface. Future Sci OA 2021; 7:FSO671. [PMID: 33815818 PMCID: PMC8015674 DOI: 10.2144/fsoa-2020-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus species have been studied for over 30 years in their role as commensal organisms in the human gut. Recently there has been a surge of interest in their abilities to natively and recombinantly stimulate immune activities, and studies have identified strains and novel molecules that convey particular advantages for applications as both immune adjuvants and immunomodulators. In this review, we discuss the recent advances in Lactobacillus-related activity at the gut/microbiota interface, the efforts to probe the boundaries of the direct and indirect therapeutic potential of these bacteria, and highlight the continued interest in harnessing the native capacity for the production of biogenic compounds shown to influence nervous system activity. Taken together, these aspects underscore Lactobacillus species as versatile therapeutic delivery vehicles capable of effector production at the lumenal-mucosal interface, and further establish a foundation of efficacy upon which future engineered strains can expand.
Collapse
Affiliation(s)
- Joseph R Spangler
- National Research Council Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Julie C Caruana
- American Society for Engineering Education Postdoctoral Fellow sited in US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Igor L Medintz
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| | - Scott A Walper
- US Naval Research Laboratory, Code 6900, Center for Bio/Molecular Science & Engineering, 4555 Overlook Ave SW, Washington DC, 20375, USA
| |
Collapse
|
10
|
Hu T, Fan Y, Long X, Pan Y, Mu J, Tan F, Zhao X. Protective effect of Lactobacillus plantarum YS3 on dextran sulfate sodium-induced colitis in C57BL/6J mice. J Food Biochem 2021; 45:e13632. [PMID: 33527475 DOI: 10.1111/jfbc.13632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
The protective effect of Lactobacillus plantarum YS3 (LP-YS3) on ulcerative colitis (UC) was assessed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Different concentrations of LP-YS4 were administered to the experimental mice by daily gavage. Several inflammatory and biochemical indices, such as interleukin-2 (IL-2), interleukin-10 (IL-10), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO), were examined in mouse serum and colon tissue. The mRNA and protein expression levels of c-Kit, CXC chemokine receptor type 2 (CXCR2), interleukin-8 (IL-8), and stem cell factor (SCF) in mouse colon tissue were assessed using Western blot and quantitative polymerase chain reaction (qPCR) assays. The findings indicated that LP-YS3 remarkably decreased the disease activity index (DAI) of UC mice (p < .05), inhibited colon length shortening induced by UC, and elevated the value of colon weight/length ratio. LP-YS3 could also markedly reduce (p < .05) the activities of MDA, MPO, and NO; while an increase in the GSH content in the colonic tissue of UC mice. Moreover, LP-YS3 remarkably increased (p < .05) the serum level of IL-2 in UC mice, while reduced those of IL-10, IL-6, IL-1β, TNF-α cytokines. qPCR data revealed that LP-YS3 could markedly upregulate the expression levels of c-Kit and SCF, while downregulate those of CXCR2 and IL-8 in the colonic tissue of UC mice (p < .05). LP-YS3 exerted an outstanding protective effect on DSS-induced colitis in C57BL/6J mice, especially at higher concentrations. PRACTICAL APPLICATIONS: Lactobacillus plantarum YS3 is a newly isolated and identified lactic acid bacteria. This study confirmed that L. plantarum YS3 can inhibit colitis and has good probiotic potential, which needs further development and utilization.
Collapse
Affiliation(s)
- Tiantian Hu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yang Fan
- Department of Clinical Nutrition, Daping Hospital, Army Medical University, Third Military Medical University), Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
11
|
Liu Y, Sheng Y, Pan Q, Xue Y, Yu L, Tian F, Zhao J, Zhang H, Zhai Q, Chen W. Identification of the key physiological characteristics of Lactobacillus plantarum strains for ulcerative colitis alleviation. Food Funct 2020; 11:1279-1291. [PMID: 31984399 DOI: 10.1039/c9fo02935d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactobacillus plantarum is a probiotic that is widely used to prevent ulcerative colitis (UC). However, the effects of this species are strain-specific. We believe that the physiological characteristics of L. plantarum strains may affect their UC-alleviating function. Therefore, this study investigated the relationship between the alleviating effect of L. plantarum strains on UC and their physiological characteristics in vitro. The physiological characteristics of 14 L. plantarum strains were assayed in vitro, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid (CLA) synthesis. To create animal models, colitis was established in C57BL/6 mice by adding 3.5% dextran sulfate sodium to drinking water for 7 days. L. plantarum strains with significantly different physiological characteristics were orally administered to the mice at a dose of 3 × 109 CFU. The results indicated that among the tested L. plantarum strains, L. plantarum N13 and L. plantarum CCFM8610 significantly alleviated colitis in the mice, as observed from the restoration of the body weight and disease activity index (DAI) score, recovery of the gut microbiota composition, reduced expression of pro-inflammatory cytokines, and significantly inhibited expression of p65. Correlation analysis indicated that four of the measured physiological characteristics (gastrointestinal transit tolerance, HT-29 cell adhesion, generation time, and CLA synthesis) were related to the UC-alleviating effects to different degrees. The strongest correlation was observed between the CLA synthesis ability and UC-alleviating effects (with Pearson correlation coefficients for IL-1β, IL-6, IL-17F, TNF-α, myeloperoxidase, and the DAI all below -0.95). The ability to synthesize CLA may be the key physiological characteristic of L. plantarum in UC alleviation. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Qiqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
12
|
Ciobanu L, Tefas C, Oancea DM, Berce C, Vodnar D, Mester A, Onica S, Toma C, Taulescu M. Effect of Lactobacillus plantarum ACTT 8014 on 5-fluorouracil induced intestinal mucositis in Wistar rats. Exp Ther Med 2020; 20:209. [PMID: 33149773 PMCID: PMC7604756 DOI: 10.3892/etm.2020.9339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Some previous studies reported that probiotics might decrease the severity of chemotherapy-induced mucositis. This study assessed the potential protective effect of Lactobacillus plantarum ATCC 8014 on 5-fluorouracil (5-FU) induced intestinal mucositis in the Wistar rats. The Crl:WI rats were divided into two groups of six animals (F, L) and one group of 5 animals (M). Group L received for 9 days 3.32x109 CFU/ml of Lactobacillus plantarum orally. In the 7th day of the experiment 400 mg of 5-FU was administered intraperitoneally in groups L and F. Group M received only the vehicles. All animals were sacrificed in the 9th day. Eleven histological characteristics of mucositis were quantified from 0 (normal) to 3 (severe) for duodenum, jejunum and colon. Semiquantitative grades measured Toll-like receptor 4 (TLR4) immunopositive cells. The independent groups were analyzed using the Kruskal-Wallis test, Mann-Whitney U test, with a Bonferroni correction for alpha (P≤0.016). In the group F, treated with 5-FU, the most affected areas were the jejunum and the duodenum. The medium score of histological lesions was 27 for jejunum (minimum 25, maximum 32) and 21 for duodenum (minimum 18, maximum 29). Graded microscopic mucosal changes of the jejunum were significantly lower in group L compared with group F (U=0, P=0.009, Mann-Whitney test). The histological changes depicted on the duodenal and colonic mucosa were less severe in group L than in group F, but without reaching the statistical significance (duodenum: U=6, P=0.172, Mann-Whitney test; colon: U=12, P=0.916, Mann-Whitney test). Although the TLR4 immunoexpression was more intense in group L, no significant statistical difference was revealed at duodenum, jejunum or colonic mucosa. Significantly fewer microscopic changes were depicted in L group on the jejunum, suggesting a potential beneficial effect of Lactobacillus plantarum at this level in 5-FU induced mucositis.
Collapse
Affiliation(s)
- Lidia Ciobanu
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Department of Gastroenterology, 'Professor Doctor Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Cristian Tefas
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.,Department of Gastroenterology, 'Professor Doctor Octavian Fodor' Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Diana Maria Oancea
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian Berce
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan Vodnar
- Institute of Life Sciences, Faculty of Food Science and Technology, University ofAgricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sorina Onica
- Department of Internal Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Corina Toma
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University ofAgricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marian Taulescu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University ofAgricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Cheng R, Liang H, Zhang Y, Guo J, Miao Z, Shen X, Chen G, Cheng G, Li M, He F. Contributions of Lactobacillus plantarum PC170 administration on the recovery of gut microbiota after short-term ceftriaxone exposure in mice. Benef Microbes 2020; 11:489-509. [PMID: 32811176 DOI: 10.3920/bm2019.0191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study aimed to determine the impact of Lactobacillus plantarum PC170 concurrent with antibiotic treatment and/or during the recovery phase after antibiotic treatment on the body weight, faecal bacterial composition, short-chain fatty acids (SCFAs) concentration, and splenic cytokine mRNA expression of mice. Orally administrated ceftriaxone quantitatively and significantly decreased body weight, faecal total bacteria, Akkermansia muciniphila, and Lactobacillus plantarum, and faecal SCFAs concentration. Ceftriaxone treatment also dramatically altered the faecal microbiota with an increased Chao1 index, decreased species diversities and Bacteroidetes, and more Firmicutes and Proteobacteria. After ceftriaxone intervention, these changes all gradually started to recover. However, faecal microbiota diversities were still totally different from control by significantly increased α- and β-diversities. Bacteroidetes all flourished and became dominant during the recovery process. However, mice treated with PC170 both in parallel with and after ceftriaxone treatment encouraged more Bacteroidetes, Verrucomicrobia, and Actinobacteria, and the diversity by which to make faecal microbiota was very much closer to control. Furthermore, the expression of splenic pro-inflammatory cytokine tumour necrosis factor-α mRNA in mice supplemented with PC170 during the recovery phase was significantly lower than natural recovery. These results indicated that antibiotics, such as ceftriaxone, even with short-term intervention, could dramatically damage the structure of gut microbiota and their abilities to produce SCFAs with loss of body weight. Although such damages could be partly recovered with the cessation of antibiotics, the implication of antibiotics to gut microbiota might remain even after antibiotic treatment. The selected strain PC170 might be a potential probiotic because of its contributions in helping the host animal to remodel or stabilise its gut microbiome and enhancing the anti-inflammatory response as protection from the side effects of antibiotic therapy when it was administered in parallel with and after antibiotic treatment.
Collapse
Affiliation(s)
- R Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - H Liang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - Y Zhang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - J Guo
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - Z Miao
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - X Shen
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - G Chen
- Sichuan Academy of Food and Fermentation Industries, Chengdu 610041, Sichuan, China P.R
| | - G Cheng
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - M Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| | - F He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, and Healthy Food Evaluation Research Center, Sichuan University, No. 16, 3rd section, South Renmin Road, Chengdu 610041, Sichuan, China P.R
| |
Collapse
|
14
|
Prophylactic Effect of Lactobacillus plantarum YS4 on Oxazolone-Induced Colitis in BALB/c Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9048971. [PMID: 32849906 PMCID: PMC7441416 DOI: 10.1155/2020/9048971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
In the present research, the effects of Lactobacillus plantarum YS4 (LP-YS4) on colitis were tested in an oxazolone-induced mouse model. BALB/c mice were induced by oxazolone and then treated with LP-YS4. The serum levels of mice were analyzed using commercial kits and the protein and mRNA expression levels of mouse colon tissue were detected by Western blotting and qPCR assay, respectively. The results demonstrated that LP-YS4 significantly (P < 0.05) increased the colon length and ratio of colon weight/length in mice with colitis and attenuated the negative effects of colitis. The results also showed that treatment with LP-YS4 significantly reduced the serum concentrations of ET-1, SP, and IL-10 while significantly increasing those of SS, VIP, and IL-2 in colitis mice (P < 0.05). In addition, LP-YS4 significantly increased the activities of GSH and SOD while decreasing those of MPO and MDA in the colon tissue of colitis mice (P < 0.05). LP-YS4 also significantly upregulated the mRNA and protein expression of c-Kit, eNOS, nNOSe, and SCF in colitis mice while significantly downregulating the relative expression of iNOS. In summary, LP-YS4 could reduce the negative effects of colitis, and such effects were better than those of the common probiotic Lactobacillus bulgaricus.
Collapse
|
15
|
Liu J, Tan F, Liu X, Yi R, Zhao X. Grape skin fermentation by Lactobacillus fermentum CQPC04 has anti-oxidative effects on human embryonic kidney cells and apoptosis-promoting effects on human hepatoma cells. RSC Adv 2020; 10:4607-4620. [PMID: 35495273 PMCID: PMC9049054 DOI: 10.1039/c9ra09863a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Studies on the antioxidant effects of grapes have attracted increasing interest. We used Lactobacillus fermentum CQPC04 to ferment grape skins. Components of the fermentation solution were separated and identified via high-performance liquid chromatography, and polyphenol compounds, including resveratrol and epicatechin, were isolated and identified from the fermentation solution. The major fermentation production components were assessed for their antioxidative abilities when administered under H2O2-induced oxidative damage in cell culture models. The fermentation solution significantly reduced oxidative damage, increased the expressions of the superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and GSH-peroxidase (GSH-Px) antioxidant genes and proteins in human embryonic kidney (293T) cells, stimulated the indices of total antioxidant capacity (T-AOC), SOD, CAT, GSH, and GSH-Px, and inhibited the indices of lactate dehydrogenase (LDH), malondialdehyde (MDA), and nitric oxide (NO), and the fermentation solution alleviated the increase in glutathione oxidized (GSSG) caused by oxidative damage, and the ratio of GSH/GSSG was up-regulated compared to the damage group. The fermentation solution also accelerated Human hepatoma (HepG2) cell death. Applying the fermentation solution to HepG2 cells significantly altered the cell morphology. HepG2 cell apoptosis and cell cycles were detected via flow cytometry. The fermentation solution promoted the apoptotic rate, and more cells were retained in the G2 phase, which prevented cells from further dividing. In the fermented group, the mRNA expression levels of Bcl-2, cox-2, PCNA, CD1, C-myc, CDK4, NF-κB and pRb1 were significantly decreased, and the expression levels of Caspase-3, Caspase-7, Caspase-8, Caspase-9, p53, TGF-β, and p21 were higher than those in the normal group. Phospho-NF-κB (p65), Bax and Caspase-8 protein expression increased, and NF-κB (p65) protein expression decreased. Protein expression levels also promoted apoptosis. Fermented grape skin solution is bioavailable in vitro and may help prevent oxidation and cancer cell proliferation.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University Valenzuela 838 Philippines
| | - Xinhong Liu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| |
Collapse
|
16
|
Li SC, Hsu WF, Chang JS, Shih CK. Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis Shows a Stronger Anti-Inflammatory Effect than Individual Strains in HT-29 Cells. Nutrients 2019; 11:nu11050969. [PMID: 31035617 PMCID: PMC6566532 DOI: 10.3390/nu11050969] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an emerging health problem associated with the dysregulation of the intestinal immune system and microbiome. Probiotics are able to reduce inflammatory responses in intestinal epithelial cells (IECs). However, entire signaling pathways and the interaction between different probiotics have not been well-documented. This study was designed to investigate the anti-inflammatory effects and mechanisms of single and combined probiotics. HT-29 cells were induced by lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α, treated with Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis or their combination and analyzed for inflammation-related molecules. Both L. acidophilus and B. animalis subsp. lactis reduced interleukin (IL)-8 secretion and the expressions of phosphorylated p65 nuclear factor-kappa B (p-p65 NF-κB), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), vascular cell adhesion molecule-1 (VCAM-1) and cyclooxygenase-2 (COX-2), while they increased toll-like receptor 2 (TLR2) expression. L. acidophilus did not decrease intercellular adhesion molecule-1 (ICAM-1) but enhanced the inhibitory efficacy of B. animalis subsp. lactis. Combined probiotics showed the best anti-inflammatory activity. These results suggest that L. acidophilus and B. animalis subsp. lactis may exert a potent anti-inflammatory effect through modulating TLR2-mediated NF-κB and MAPK signaling pathways in inflammatory IECs. Both strains, especially their combination, may be novel adjuvants for IBD therapy.
Collapse
Affiliation(s)
- Sing-Chung Li
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Fang Hsu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|