1
|
Wu C, Ouyang X, Zhou X, Li X, Li H, Li W, Wan C, Yu B, El-Sohaimy S, Wu Z. Dry Nutrition Delivery System Based on Defatted Soybean Particles and Its Application with β-Carotene. Molecules 2023; 28:molecules28083429. [PMID: 37110663 PMCID: PMC10145488 DOI: 10.3390/molecules28083429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Many nutrition delivery systems (NDSs) have been developed for the encapsulation, protection, and delivery of bioactive compounds, such as β-carotene. Most of those systems were prepared in solution, which is inconvenient for transportation and storage in the food industry. In the present work, we constructed an environmentally friendly dry NDS based on defatted soybean particles (DSPs) by milling a β-carotene-DSP mixture. The loading efficiency of the NDS reached 89.0%, and the cumulative release rate decreased from 15.1% (free β-carotene) to 6.0% within 8 h. The stability of β-carotene in the dry NDS was found to have increased in a thermogravimetric analysis. Stored for 14 days at 55 °C or under UV irradiation, the retaining rates of β-carotene in the NDS increased to 50.7% and 63.6%, respectively, while they were 24.2% and 54.6% for the free samples. The bioavailability of β-carotene was improved by the NDS too. The apparent permeability coefficient of the NDS reached 1.37 × 10-6 cm/s, which is 12 times that of free β-carotene (0.11 × 10-6 cm/s). Besides being environmentally friendly, the dry NDS can facilitate carriage, transportation, or storage in the food industry, and similar to other NDSs, it improves the stability and bioavailability of nutrients.
Collapse
Affiliation(s)
- Chunyu Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xuewen Ouyang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Xiaofei Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Aistarfish Technology Co., Ltd., Hangzhou 310012, China
| | - Hongbo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Anhui Huaheng Biotechnology Co., Ltd., Hefei 230031, China
| | - Wenying Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Zhaotong Health Vocational College, Zhaotong 657000, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Bo Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Sobhy El-Sohaimy
- Department of Technology and Organization of Public Catering, Institute of Sport, Tourism and Service, South Ural State University, 454080 Chelyabinsk, Russia
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
2
|
Liu S, Chen Z, Zhang H, Li Y, Maierhaba T, An J, Zhou Z, Deng L. Comparison of eugenol and dihydromyricetin loaded nanofibers by electro-blowing spinning for active packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Zhang R, Zhang H, Shi H, Zhang D, Zhang Z, Liu H. Strategic developments in the drug delivery of natural product dihydromyricetin: applications, prospects, and challenges. Drug Deliv 2022; 29:3052-3070. [PMID: 36146939 PMCID: PMC9518266 DOI: 10.1080/10717544.2022.2125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Dihydromyricetin (DHM) is an important natural flavonoid that has attracted much attention because of its various functions such as protecting the cardiovascular system and liver, treating cancer and neurodegenerative diseases, and anti-inflammation effect, etc. Despite its great development potential in pharmacy, DHM has some problems in pharmaceutical applications such as low solubility, permeability, and stability. To settle these issues, extensive research has been carried out on its physicochemical properties and dosage forms to produce all kinds of DHM preparations in the past ten years. In addition, the combined use of DHM with other drugs is a promising strategy to expand the application of DHM. However, although invention patents for DHM preparations have been issued in several countries, the current transformation of DHM research results into market products is insufficient. To date, there is still a lack of deep research into the pharmacokinetics, pharmacodynamics, toxicology, and action mechanism of DHM preparations. Besides, preparations for combined therapy of DHM with other drugs are scarcely reported, which necessitates the development of dosage forms for this application. Apart from medicine, the development of DHM in the food industry is also of great potential. Due to its multiple effects and excellent safety, DHM preparations can be developed for functional drinks and foods. Through this review, we hope to draw more attention to the development potential of DHM and the above challenges and provide valuable references for the research and development of other natural products with a similar structure-activity relationship to this drug.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Houyin Shi
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
de Oliveira MC, Bruschi ML. Self-Emulsifying Systems for Delivery of Bioactive Compounds from Natural Origin. AAPS PharmSciTech 2022; 23:134. [PMID: 35534702 DOI: 10.1208/s12249-022-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
Nature has been used as therapeutic resources in the treatment of diseases for many years. However, some natural compounds have poor water solubility. Therefore, physicochemical strategies and technologies are necessary for development of systems for carrying these substances. The self-emulsifying drug delivery systems (SEDDS) have been used as carriers of hydrophobic compounds in order to increase the solubility and absorption, improving their bioavailability. SEDDS are constituted with a mixture of oils and surfactants which, when come into contact with an aqueous medium under mild agitation, can form emulsions. In the last years, a wide variety of self-emulsifying formulations containing bioactive compounds from natural origin has been developed. This review provides a comprehensive overview of the main excipients and natural bioactive compounds composing SEDDS. In addition, applications, new technologies and innovation are reviewed as well. Examples of self-emulsifying formulations administered in different sites are also considered for a better understanding of the use of this strategy to modify the delivery of compounds from natural origin.
Collapse
|
6
|
Hovenia dulcis Thumberg: Phytochemistry, Pharmacology, Toxicology and Regulatory Framework for Its Use in the European Union. Molecules 2021; 26:molecules26040903. [PMID: 33572099 PMCID: PMC7914479 DOI: 10.3390/molecules26040903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
Hovenia dulcis Thunberg is an herbal plant, belonging to the Rhamnaceae family, widespread in west Asia, USA, Australia and New Zealand, but still almost unknown in Western countries. H. dulcis has been described to possess several pharmacological properties, such as antidiabetic, anticancer, antioxidant, anti-inflammatory and hepatoprotective, especially in the hangover treatment, validating its use as an herbal remedy in the Chinese Traditional Medicine. These biological properties are related to a variety of secondary metabolites synthesized by the different plant parts. Root, bark and leaves are rich of dammarane-type triterpene saponins; dihydrokaempferol, quercetin, 3,3′,5′,5,7-pentahydroflavone and dihydromyricetin are flavonoids isolated from the seeds; fruits contain mainly dihydroflavonols, such as dihydromyricetin (or ampelopsin) and hovenodulinol, and flavonols such as myricetin and gallocatechin; alkaloids were found in root, barks (frangulanin) and seeds (perlolyrin), and organic acids (vanillic and ferulic) in hot water extract from seeds. Finally, peduncles have plenty of polysaccharides which justify the use as a food supplement. The aim of this work is to review the whole scientific production, with special focus on the last decade, in order to update phytochemistry, biological activities, nutritional properties, toxicological aspect and regulatory classification of H. dulcis extracts for its use in the European Union.
Collapse
|
7
|
Carneiro RC, Ye L, Baek N, Teixeira GH, O'Keefe SF. Vine tea (Ampelopsis grossedentata): A review of chemical composition, functional properties, and potential food applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Geng S, Jiang Z, Ma H, Pu P, Liu B, Liang G. Fabrication and characterization of novel edible Pickering emulsion gels stabilized by dihydromyricetin. Food Chem 2020; 343:128486. [PMID: 33160778 DOI: 10.1016/j.foodchem.2020.128486] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
The edible Pickering emulsion gels stabilized by dihydromyricetin were fabricated for the first time. To clarify the formation mechanism, dihydromyricetin particles were first characterized. Then, the factors influencingthe gel formation, microstructure and mechanical properties were investigated. Finally, the molecular dynamics simulation was performed to clarify the microscopic behavior of dihydromyricetin in an oil-water system. The results indicated that dihydromyricetin particles occurred as regular rod-shaped crystals with amphiphilicity. They formed a 3D steric network by overlapping with each other, separating oil droplets and stabilizing O/W emulsion gels. The dihydromyricetin concentration and oil-phase weight fraction had a significant influence on the formation and mechanical properties of gels. The alkali and low ionic strength conditions benefited the gel stability. The molecular dynamics showed that dihydromyricetin could spontaneously and quickly transfer to the oil-water interface, reduce the interfacialtension and enhance the interface thickness, which agreed with the experimental results.
Collapse
Affiliation(s)
- Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zhaojing Jiang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pei Pu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Application of Plackett-Burman Design in Screening of Natural Antioxidants Suitable for Anchovy Oil. Antioxidants (Basel) 2019; 8:antiox8120627. [PMID: 31817714 PMCID: PMC6943644 DOI: 10.3390/antiox8120627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Considering the safety of synthetic antioxidants, more and more natural antioxidants have been developed and utilized in foods. This study aimed to screen out a natural antioxidant combination from many antioxidants, which could significantly affect the oxidation stability of anchovy oil, while Plackett–Burman design (PBD) methodology was employed in this screening. According to the statistical results of this design, sesamol, dihydromyricetin, teapolyphenol, and rosemary acid were four significant parameters on the oxidation stability of anchovy oil. Moreover, dihydromyricetin presented the best antioxidant effect among nine kinds of selected antioxidants when they were used alone in anchovy oil. Meanwhile, a combination including sesamol (0.02%), teapolyphenol (0.02%). and rosemary acid (0.02%) was adopted, and its antioxidant ability was similar to that of tert-butylhydroquinone (TBHQ). Additionally, phytic acid as a synergist was used and combined with sesamol, and the antioxidant ability of this combination was better than that of TBHQ. This study presented a reference for the industrial applications of natural antioxidants and synergists in anchovy oil.
Collapse
|