1
|
Wu S, Wang C, Liu C, He Q, Zhang Z, Ma T. Synergistic effects of xanthan gum and β-cyclodextrin on properties and stability of vegetable oil-based whipped cream. Int J Biol Macromol 2024; 279:135379. [PMID: 39244122 DOI: 10.1016/j.ijbiomac.2024.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The synergistic effects between xanthan gum (XG) and β-cyclodextrin (β-CD) on the properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates was investigated. The visual appearance, SEM, TEM, CLSM, FT-IR and LF-NMR results showed that when the ratio of XG to β-CD in the XG-β-CD complex was appropriate, the hydrogen bonding effect between β-CD and XG was significant enhanced, the three-dimensional network structure has the highest density, the emulsion droplets were the smallest and evenly distributed. The unique tapered microstructure of β-CD acted as a bridge between the hydrophilic and hydrophobic components, effectively preventing the aggregation of oil droplets and establishing a flexible support system between oil droplets; while the flexible molecular structure of XG could support Pickering emulsion system. The XG-β-CD complex had a synergistic effect with protein aggregates, making it ideal for use in whipped cream products. This study explored the stability mechanism of β-CD in the Pickering emulsion-based whipped cream system, providing valuable insights into producing whole plant-based whipped cream by texturizing highly unsaturated oils. This effectively solves the problem of inadequate intake of unsaturated oil for individuals who consume excessive amounts of animal-derived fats.
Collapse
Affiliation(s)
- Sisi Wu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Chenqiang Wang
- Technology Center, Xinjiang Guannong Share Group Co., Ltd, Korla City, Xinjiang 841000, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Qiuqiu He
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Zifan Zhang
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Shams Z, Allahdad Z, Jaiswal L, Salmieri S, Lacroix M. Development of hen egg-based protein beverages with high nutritional value. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1383-1399. [PMID: 38910930 PMCID: PMC11190125 DOI: 10.1007/s13197-023-05909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 06/25/2024]
Abstract
Physical stability is a prerequisite for any emulsion-based beverage. This study aimed to optimize beverage emulsion (BE) rich in whole egg, whey protein isolate (WPI), and soyabean oil in the presence of polygalactose derivative as adsorbing hydrocolloids (AH) and partially hydrolyzed starch as non-adsorbing hydrocolloids (NAH). All formulations were optimized for stability, particle size, polydispersity index (PDI), and zeta potential (ζ). A central composite design was applied to investigate the impact of WPI concentration, hydrocolloid concentration, oil volume, and pH as independent factors on particle size, PDI, and ζ of emulsions. The optimum conditions were met upon formulating BE with 1 whole egg, 9.28 g WPI, 11.24 g AH, 5.58 mL oil at pH 7. Two optimal formulations were obtained for BE stabilized with NAH at pH 3 and 7, at which droplets had the highest electrical charge. Noting that, less amount of NAH (7.5 g) was required at pH 3 than at pH 7 (13.56 g). Oil content (3 mL) and WPI concentration (16 g) for both NAH formulations were similar. The size, polydispersity index (PDI), and zeta potential of AH-stabilized emulsion were 762 nm, 0.69, and - 32.05 mV, respectively, while for NAH emulsion, they were 150.02 nm, 0.40, and - 28.53 mV at pH 7; and 248.39 nm, 0.41, and 27.1 mV at pH 3, respectively. No conspicuous gravitational separation was observed after 20 days of storage at 4 °C. Hence, both hydrocolloids are appropriate to stabilize protein-enriched BE at neutral pH; however, physical stability was also achieved at acidic pH for NAH-stabilized emulsions.
Collapse
Affiliation(s)
- Zahra Shams
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 des Prairies Blvd, Laval, QC H7V 1B7 Canada
| | - Zahra Allahdad
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 des Prairies Blvd, Laval, QC H7V 1B7 Canada
| | - Lily Jaiswal
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 des Prairies Blvd, Laval, QC H7V 1B7 Canada
| | - Stephane Salmieri
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 des Prairies Blvd, Laval, QC H7V 1B7 Canada
| | - Monique Lacroix
- INRS Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and Quality, Institute of Nutrition and Functional Foods (INAF), 531 des Prairies Blvd, Laval, QC H7V 1B7 Canada
| |
Collapse
|
3
|
Agustinisari I, Mulia K, Harimurti N, Nasikin M, Rienoviar, Herawati H, Manalu LP. The Potency of Maillard Conjugates Containing Whey Protein as Natural Emulsifier. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:3254132. [PMID: 38962097 PMCID: PMC11222009 DOI: 10.1155/2024/3254132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
There is a continued need for the advancement of natural emulsifiers to replace synthetic emulsifiers, driven by human health concerns. This study is aimed at producing protein-polysaccharide conjugates through the Maillard reaction and at evaluating its ability as an emulsifier based on its emulsifying properties. The proteins used in this study were bovine milk whey protein and soy protein isolates, while the polysaccharides were maltodextrin and pectin. The protein-polysaccharide conjugation used a Maillard reaction under dry heating conditions. The protein and polysaccharide mass ratios were 1 : 2 and 1 : 3. The results showed that the types of proteins and polysaccharides and their mass affect the surface tension of the conjugate products. Whey protein-pectin conjugates with a mass ratio of 1 : 2 and a concentration of 1% had the lowest surface tension at 43.77 dyne/cm2. This conjugate sample also showed the highest emulsifying index at 27.20 m2/g. The conjugate powder containing pectin as a polysaccharide showed better emulsifying activity than that of those containing maltodextrin. However, the smallest droplet size of the emulsion (256.5 nm) resulted from the emulsification process using whey protein-maltodextrin conjugates as an emulsifier. The FTIR and gel electrophoresis (SDS-PAGE) analysis confirmed the conjugation formation. In general, protein-polysaccharide conjugates containing whey protein could potentially act as a natural emulsifier for food.
Collapse
Affiliation(s)
- Iceu Agustinisari
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Kamarza Mulia
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Niken Harimurti
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Mohammad Nasikin
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Rienoviar
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Heny Herawati
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Lamhot Parulian Manalu
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| |
Collapse
|
4
|
Liu C, Tian Y, Ma Z, Zhou L. Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite. Foods 2023; 12:2366. [PMID: 37372577 DOI: 10.3390/foods12122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G' values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20-65 °C. The chewing properties of Pickering emulsions prepared by β-CD and corn oil, camellia oil, lard, and herring oil were 8.02 ± 0.24 N, 7.94 ± 0.16 N, 36.41 ± 1.25 N, and 5.17 ± 0.13 N, respectively. The chewing properties of Pickering emulsions made with the CA/β-CD composite and corn oil, camellia oil, lard, and herring oil were 2.51 ± 0.05 N, 2.56 ± 0.05 N, 22.67 ± 1.70 N, 3.83 ± 0.29 N, respectively. The texture properties confirmed that the CA/β-CD-composite-stabilized-emulsion had superior palatability. After 28 days at 50 °C, malondialdehyde (MDA) was detected in the emulsion. Compared with the β-CD and CA + β-CD emulsion, the CA/β-CD composite emulsion had the lowest content of MDA (182.23 ± 8.93 nmol/kg). The in vitro digestion results showed that the free fatty acid (FFA) release rates of the CA/β-CD composite emulsion (87.49 ± 3.40%) were higher than those of the β-CD emulsion (74.32 ± 2.11%). This strategy provides ideas for expanding the application range of emulsifier particles and developing food-grade Pickering emulsions with antioxidant capacity.
Collapse
Affiliation(s)
- Caihua Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Evaluation of deodorization techniques using cyclodextrins on the headspace volatiles and antioxidant properties of onion. Food Chem 2023; 410:135416. [PMID: 36652801 DOI: 10.1016/j.foodchem.2023.135416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Sulphur-containing volatiles in onion produce unpleasant odors and this limit their usage in foods. To expand its application, several additives including α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and chitosan were added to onion solution and evaluated for their effect on sulphur-containing volatiles. Also, antioxidant property using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and oxidative stabilities in an oil-in-water (O/W) emulsion were carried out. The total volatile contents were decreased in the order of α-CD (50.1%), β-CD (49.3%), HP-β-CD (46.2%), and chitosan (7%). Meanwhile, HP-β-CD showed the highest DPPH radical scavenging ability followed by β-CD, α-CD, and chitosan with decreasing order. The β-CD significantly enhanced the oxidative stability of the O/W emulsion, whereas α-CD and β-HP-CD showed prooxidative behavior. Overall, β-CD might be used as a sulphur-containing volatile decreasing agent, which could keep the antioxidant properties of onion in the O/W emulsion.
Collapse
|
6
|
Disulfide cleavage to improve interfacial behavior and emulsification properties of oat protein. Food Chem 2023; 404:134511. [DOI: 10.1016/j.foodchem.2022.134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
7
|
Zhou F, Yu L, Liu Y, Zeng Z, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Wu H, Wu W, Liu Y. Effect of hydroxypropyl-β-cyclodextrin and lecithin co-stabilized nanoemulsions on the konjac glucomannan/pullulan film. Int J Biol Macromol 2023; 235:123802. [PMID: 36842744 DOI: 10.1016/j.ijbiomac.2023.123802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
In this study, the various ratio of hydroxypropyl-β-cyclodextrin (HPCD) to lecithin (LEC) was 0:1, 0.5:1, 1:1, 1.5:1 and 2:1 (w/w) co-stabilized cinnamon essential oil (CEO) nanoemulsions were prepared. These nanoemulsions were successfully incorporated in the konjac glucomannan/pullulan polysaccharides-based film matrix. The composition of nanoemulsions and the effect of various nanoemulsions on rheological, mechanical, Water vapor permeability, optical, color, morphology properties, and CEO retention rate of the composite films were characterized. The results demonstrated that HPCD and LEC nanoemulsions had small particle size under 120 nm and high stability during 21 days storage, the incorporation of nanoemulsions reduced the viscosity of film-solution, transmittance, Water vapor permeability and mechanical properties of films, but an appropriate HPCD content 1:1 w/w of nanoemulsions could restored the mechanical properties of the films. Otherwise, 1:1 w/w of nanoemulsion film also exhibited a more compact and uniform structure, Furthermore, 2:1 w/w of nanoemulsion films with high retention rate of CEO, and the antioxidant and better antibacterial activities against E. coli and S. aureus. The nanoemulsion films utilized in this study also prolonged the shelf life of Agaricus bisporus mushrooms and cherries while maintaining their commercial value.
Collapse
Affiliation(s)
- Feng Zhou
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Linman Yu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Yang Liu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Zhen Zeng
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China.
| | - Cheng Li
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Zhengfeng Fang
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Bin Hu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Hong Chen
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Caixia Wang
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Saiyan Chen
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China
| | - Hejun Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yuntao Liu
- College of Food Science Sichuan, Agricultural University, Yaan 625014, China.
| |
Collapse
|
8
|
Encapsulation of hydroxycitronellal in β-cyclodextrin and the characteristics of the inclusion complex. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2023. [DOI: 10.2478/pjct-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Abstract
Hydroxycitronellal has been widely used in foods, beverages, perfumery and cosmetics. It can also be used to treat anxiety. The major drawbacks regarding the use of hydroxycitronellal are related to water insolubility, volatility, instability, and sensitization. To overcome these concerns, β-cyclodextrin was adopted as wall material to encapsulate hydroxycitronellal in this work. Hydroxycitronellal-β-cyclodextrin inclusion complex was prepared and the product was characterized. The interaction of hydroxycitronellal and β-cyclodextrin, and the assembly of hydroxycitronellal-β-cyclodextrin inclusion complex were investigated by molecular simulation (MM). The results showed that hydroxycitronellal loading capacity was 8.5%. The thermal stability and lastingness of hydroxycitronellal were improved by the formation of the inclusion complex. The minimum binding energy was –151.2 kJ/mol. Among the perpendicular, staggered parallel and ideally parallel orientation of the inclusion complexes, the minimum energy value was found for the staggered parallel arrangement. These basic data are useful to understand the interaction between hydroxycitronellal and β-cyclodextrin.
Collapse
|
9
|
Li X, Fan L, Li R, Han Y, Li J. 3D/4d printing of β-cyclodextrin-based high internal phase emulsions. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Hotchkiss AT, Chau HK, Strahan GD, Nuñez A, Simon S, White AK, Dieng S, Heuberger ER, Yadav MP, Hirsch J. Structural characterization of red beet fiber and pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Zhao F, Li Y, Li C, Ban X, Gu Z, Li Z. Glycosyltransferases improve breadmaking quality by altering multiscale structure in gluten-free bread. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Jayari A, Donsì F, Ferrari G, Maaroufi A. Nanoencapsulation of Thyme Essential Oils: Formulation, Characterization, Storage Stability, and Biological Activity. Foods 2022; 11:foods11131858. [PMID: 35804672 PMCID: PMC9265609 DOI: 10.3390/foods11131858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
Collapse
Affiliation(s)
- Asma Jayari
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- Correspondence: ; Tel.: +39-089-964-135
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institute Pasteur of Tunis, BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia; (A.J.); (A.M.)
| |
Collapse
|
13
|
Orthogonal experimental design for the optimization of four additives in a model liquid infant formula to improve its thermal stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Lu J, Li X, Qiu C, McClements DJ, Jiao A, Wang J, Jin Z. Preparation and Characterization of Food-Grade Pickering Emulsions Stabilized with Chitosan-Phytic Acid-Cyclodextrin Nanoparticles. Foods 2022; 11:foods11030450. [PMID: 35159600 PMCID: PMC8834252 DOI: 10.3390/foods11030450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 01/24/2023] Open
Abstract
This study aimed to fabricate food-grade Pickering emulsions stabilized by chitosan-phytic acid-β-cyclodextrin (CS-PA-CD) nanoparticles. The CS-PA-CD nanoparticles were characterized with FITR, XRD, and TGA to prove its successfully crosslinking, then characterized by DLS system and scanning electron microscopy showing the smallest average particle size was 434.2 ± 2.5 nm and it increased with the ratio of PA-CD to CS increasing. Pickering emulsions stabilized by CS-PA-CD nanoparticles was prepared and it showed the best stability at around pH 6. The particle concentration higher than 1.0% (w/v) and the oil fraction above 0.5% (v/v) could reach the emulsion stability. In addition, the Pickering emulsions were stable at various temperature (30–70 °C) and influenced by the certain change of ionic strength (0–500 mM). These CS-PA-CD Pickering emulsions showed great application in the formation of functional foods and pharmaceutical industries.
Collapse
Affiliation(s)
- Jiaxin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | | | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China;
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China; (J.L.); (C.Q.); (A.J.)
- Correspondence:
| |
Collapse
|
15
|
Li Q, Huang Y, Du Y, Chen Y, Wu Y, Zhong K, Huang Y, Gao H. Food-grade olive oil Pickering emulsions stabilized by starch/β-cyclodextrin complex nanoparticles: Improved storage stability and regulatory effects on gut microbiota. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Baranauskaite J, Ockun MA, Uner B, Tas C, Ivanauskas L. Effect of the Amount of Polysorbate 80 and Oregano Essential Oil on the Emulsion Stability and Characterization Properties of Sodium Alginate Microcapsules. Molecules 2021; 26:molecules26206304. [PMID: 34684886 PMCID: PMC8538521 DOI: 10.3390/molecules26206304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Essential oils have a high volatility that leads to evaporation and loss of their pharmacological effect when exposed to the environment. The objectives of the present work were to prepare microcapsules with oregano essential oil by extrusion using sodium alginate as a shell material and non-ionic surfactant polysorbate 80 as an emulsifier to stabilize the emulsion. The present study was aimed to evaluate the physical parameters of microcapsules and to compare the influence of the amount of emulsifier and the essential oil-to-emulsifier ratio on the capsules’ physical parameters and encapsulation efficiency; to our knowledge, the existing research had not yet revealed whether unstable emulsion affects the encapsulation efficiency of oregano essential oil. This study showed that increasing the emulsifier amount in the formulation significantly influenced encapsulation efficiency and particle size. Moreover, increasing the emulsion stability positively influenced the encapsulation efficiency. The emulsion creaming index depended on the emulsifier amount in the formulation: the highest creaming index (%) was obtained with the highest amount of polysorbate 80. However, the essential oil-to-polysorbate 80 ratio and essential oil amount did not affect the hardness of the microcapsules (p > 0.05). In conclusion, the obtained results could be promising information for production of microcapsules. Despite the fact that microencapsulation of essential oils is a promising and extremely attractive application area for the pharmaceutical industry, further basic research needs to be carried out.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cd., Atasehir, Istanbul 34755, Turkey; (J.B.); (B.U.); (C.T.)
| | - Mehmet Ali Ockun
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cd., Atasehir, Istanbul 34755, Turkey;
| | - Burcu Uner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cd., Atasehir, Istanbul 34755, Turkey; (J.B.); (B.U.); (C.T.)
| | - Cetin Tas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Kayisdagi Cd., Atasehir, Istanbul 34755, Turkey; (J.B.); (B.U.); (C.T.)
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, 13 Sukileliu Str., LT-50161 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
17
|
Jug M, Yoon BK, Jackman JA. Cyclodextrin-based Pickering emulsions: functional properties and drug delivery applications. J INCL PHENOM MACRO 2021; 101:31-50. [PMID: 34366706 PMCID: PMC8330820 DOI: 10.1007/s10847-021-01097-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Cyclodextrins (CDs) are biocompatible, cyclic oligosaccharides that are widely used in various industrial applications and have intriguing interfacial science properties. While CD molecules typically have low surface activity, they are capable of stabilizing emulsions by inclusion complexation of oil-phase components at the oil/water interface, which results in Pickering emulsion formation. Such surfactant-free formulations have gained considerable attention in recent years, owing to their enhanced physical stability, improved tolerability, and superior environmental compatibility compared to conventional, surfactant-based emulsions. In this review, we critically describe the latest insights into the molecular mechanisms involved in CD stabilization of Pickering emulsions, including covering practical aspects such as methods to prepare CD-based Pickering emulsions, lipid encapsulation, and relevant stability issues. In addition, the rheological and textural features of CD-based Pickering emulsions are discussed and particular attention is focused on promising examples for drug delivery, cosmetic, and nutraceutical applications. The functionality of currently developed CD-based Pickering emulsions is also summarised, including examples such as antifungal uses, and we close by discussing emerging possibilities to utilize the molecular encapsulation of CD-based emulsions for translational medicine applications in the antiviral and antibacterial spaces.
Collapse
Affiliation(s)
- Mario Jug
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, Zagreb, Croatia
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
18
|
Zhu G, Xiao Z, Zhu G. Fabrication and characterization of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex. J Food Sci 2021; 86:3589-3597. [PMID: 34268741 DOI: 10.1111/1750-3841.15835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/27/2022]
Abstract
Flavors play crucial role in food industry. Ethyl acetate, as probably one of the most used of all flavor chemicals by volume, is used widely in many industries. However, ethyl acetate is not too stable and can be slowly decomposed by moisture. Furthermore, ethyl acetate is a volatile liquid insoluble in water and it does not last long enough. In order to solve these problems, hydroxypropyl-β-cyclodextrin was used as wall material to encapsulate ethyl acetate in this work. The product was characterized by Fourier transform infrared (FTIR) spectroscopy and thermalgravimetric analysis (TGA). The results showed that the peaks at 1,744 and 1,056 cm-1 in the FTIR spectrum of ethyl acetate disappeared in the FTIR spectrum of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex. After the encapsulation of ethyl acetate, the O-H and C-H stretching absorption of hydroxypropyl-β-cyclodextrin changed. The TGA results showed that from 77°C to 292°C ethyl acetate is released from the ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex in temperatures far beyond ethyl acetate 77°C boiling point. This phenomenon confirmed that the lastingness and thermal stability of ethyl acetate can be improved by the formation of an inclusion complex. The loading capacity of ethyl acetate was 4.86 ± 0.08% and ethyl acetate:hydroxypropyl-β-cyclodextrin stoichiometry is close to 1:1. The interaction of ethyl acetate and hydroxypropyl-β-cyclodextrin was investigated using molecular mechanics calculation. The binding energy was calculated and the possible conformation of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex was optimized to the minimum energy. The binding energy minimum is at the 0.44 × 10-10 m point and its value is -103.9 kJ/mol. PRACTICAL APPLICATION: Encapsulation of ethyl acetate in hydroxypropyl-β-cyclodextrin is a possible way to protect ethyl acetate, improve its stability, water solubility, and may also enhance its lastingness.
Collapse
Affiliation(s)
- Guangyong Zhu
- Shanghai Institute of Technology, Shanghai, PR China
| | - Zuobing Xiao
- Shanghai Institute of Technology, Shanghai, PR China
| | | |
Collapse
|
19
|
Elik A, Koçak Yanik D, Ozel B, Oztop MH, Göğüş F. The effects of pectin and wax on the characteristics of oil-in-water (O/W) emulsions. J Food Sci 2021; 86:3148-3158. [PMID: 34146423 DOI: 10.1111/1750-3841.15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
The study was aimed to investigate characteristics of emulsion containing pectin, wax, maltodextrin, and carotenoid enriched flaxseed oil by means of stability, rheology, particle size, and low-resolution of time domain nuclear magnetic resonance (NMR) relaxometry measurements. Emulsions were prepared with different carotenoid enriched-flaxseed oil concentrations (6%, 9%, 12%, and 15% w/w) and ratios of maltodextrin/(pectin+wax) (3:1, 6:1, 9:1, and 12:1 g/g). Percentage separation of 12% oil 12:1 ratio of maltodextrin/(pectin+wax) (g/g), 15% oil 9:1, and 12:1 ratios of maltodextrin/(pectin+wax) (g/g) of emulsions was determined as 2.0 ± 0.5%, 4.0 ± 0.5%, and 8.0 ± 0.5%, respectively. No separation was observed in other emulsions. The rheological behavior of emulsions was best described by the power law model. When the concentration of pectin+wax in the emulsion decreased, the n values of the emulsions were close to 1, indicating that the fluid behavior approaches Newtonian behavior. Moreover, the emulsion viscosity was observed to increase when pectin and wax concentrations in the emulsion increased. The increase in pectin and wax concentration in emulsions with oil contents of 6% and 9% resulted in a reduction in the average particle size. However, if the oil concentration in the emulsions was 12% or more, the increase in the ratio of maltodextrin/(pectin+wax) (g/g) led to a decrease in the average particle size. NMR transverse relaxation times (T2 ) of emulsions were measured and results showed that T2 values for almost all formulations decreased when the ratio of maltodextrin/(pectin+wax) reduced. PRACTICAL APPLICATION: Study results demonstrated that the combination of pectin and wax together with maltodextrin as a filling material could be an alternative way to improve emulsion stability. Findings of this study provided useful guidance for the future studies about the potential use of pectin, wax, and maltodextrin as wall material in encapsulation of oils or in producing edible films.
Collapse
Affiliation(s)
- Aysel Elik
- Food Engineering Department, Engineering Faculty, Gaziantep University, Gaziantep, Turkey
| | - Derya Koçak Yanik
- Food Engineering Department, Engineering Faculty, Gaziantep University, Gaziantep, Turkey
| | - Baris Ozel
- Food Engineering Department, Engineering Faculty, Middle East Technical University, Ankara, Turkey.,Food Engineering Department, Engineering Faculty, Ahi Evran University, Kirsehir, Turkey
| | - Mecit Halil Oztop
- Food Engineering Department, Engineering Faculty, Middle East Technical University, Ankara, Turkey
| | - Fahrettin Göğüş
- Food Engineering Department, Engineering Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
20
|
Wang Y, Liu Y, Ma L, Yang L, Cong P, Lan H, Xue C, Xu J. Co-oxidation of Antarctic krill oil with whey protein and myofibrillar protein in oil-in-water emulsions. J Food Sci 2020; 85:3797-3805. [PMID: 33067851 DOI: 10.1111/1750-3841.15500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/30/2020] [Accepted: 09/24/2020] [Indexed: 11/28/2022]
Abstract
Antarctic krill oil (AKO) is usually encapsulated by the protein materials, enhancing its oxidative stability. Proteins exhibit immense effect on lipid oxidation and induce protein-lipid co-oxidation. This study aimed at elucidating the co-oxidation mechanism of AKO and whey protein (WP) or myofibrillar protein (MP) in oil-in-water emulsions. The estimations of malondialdehyde (MDA) content, phospholipid molecular species, and pyrrole content resulted in increased and decreased oxidation rate of AKO (especially phosphatidylethanolamine) by WP and MP, respectively. Meanwhile, protein concentration, sulfhydryl content, the loss of tryptophan fluorescence intensity, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis results demonstrated that AKO promoted WP oxidation but inhibited MP oxidation. Further, the antioxidative abilities of seven common antioxidants were evaluated. Ascorbyl palmitate showed the most substantial antioxidative effect for both AKO and proteins (about 70% decrease of MDA content and 30% decrease of the decrease ratio of tryptophan fluorescence intensity). This finding supported that different proteins could exhibit different pro/anti-oxidative effects on lipid oxidation, especially for marine lipids abundant in phospholipids and polyunsaturated fatty acids. Besides, MP could also act as antioxidant in MP AKO emulsions, further extending its application from traditional surfactants. PRACTICAL APPLICATION: AKO is usually encapsulated by the protein materials, enhancing its oxidative stability. The results demonstrated MP could inhibit AKO oxidation, and vice versa, especially when ascorbyl palmitate was added at the same time. As a result, this finding explored a new potential wall material with antioxidative ability for the encapsulated products of AKO.
Collapse
Affiliation(s)
- Yuliu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| | - Yanzi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| | - Lei Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| | - Haohui Lan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266235, People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, 266003, People's Republic of China
| |
Collapse
|
21
|
Ramaswamy HS, Arora JK, Vatankhah H, Taherian AR, Rattan N. Stability of hydrocolloid enriched oil-in-water emulsions in beverages subjected to thermal and nonthermal processing. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1822177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Jaideep K. Arora
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| | - Hamed Vatankhah
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| | - Ali R. Taherian
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| | - Navneet Rattan
- Department of Food Science, McGill University, Montreal, Quebec, Canada
| |
Collapse
|