1
|
Li L, Wang N, Fan X, He N, Zhang T. A preparation technology of volatile components in Linggui Zhugan decoction based on the transfer of cinnamaldehyde and its anti-gastric ulcer effect. Saudi Pharm J 2023; 31:101833. [PMID: 38028222 PMCID: PMC10651668 DOI: 10.1016/j.jsps.2023.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aims to preserve the volatile components of Linggui Zhugan (LGZG) decoction, offering an experimental foundation for subsequent preparations efforts. Methods Two modern sample preparation processes were compared with the traditional method approach using HPLC fingerprints. After identifying the main volatile components in LGZG aqueous decoction, the inclusion method of inclusion compounds (IC-LGZG) was established and optimized at laboratory, pilot and production scales. Characterization, stability testing of IC-LGZG, and experiments on gastric ulcer rats were conducted to validate the transferability of chemical composition and pharmaceutical efficacy. Results The study focused on preserving the volatile components in LGZG modern preparations. HPLC analysis revealed cinnamaldehyde (CA) as the main volatile component in LGZG decoction. The optimized IC-LGZG preparation involved heating aromatic water to 40 °C, adding 20 g/L of β-Cyclodextrin (β-CD), keeping warm and stirring at 300 r for 30 min. This process exhibited good repeatability across different verification tests at varying scales. IC-LGZG obtained effectively transferred CA molecules into the β-CD molecules via encapsulation, remaining stable when stored in sealed and dark conditions. Finally, CA, IC-LGZG and M-LGZG (a mixture of IC-LGZG and water-soluble extract powder) effectively prevented the formation of gastric ulcer by mitigating reductions in IL-10, SOD and the increase of TNF-α, NO, MDA in serum. Conclusion The IC-LGZG prepared using this process successfully transfers volatile components, both chemically and pharmacologically, making it suitable for modern preparations of LGZG.
Collapse
Affiliation(s)
- Ling Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Mendes LA, Vasconcelos LC, Fontes MMP, Martins GS, Bergamin ADS, Silva MA, Silva RRA, de Oliveira TV, Souza VGL, Ferreira MFDS, Teixeira RR, Lopes RP. Herbicide and Cytogenotoxic Activity of Inclusion Complexes of Psidium gaudichaudianum Leaf Essential Oil and β-Caryophyllene on 2-Hydroxypropyl- β-cyclodextrin. Molecules 2023; 28:5909. [PMID: 37570879 PMCID: PMC10420928 DOI: 10.3390/molecules28155909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound β-caryophyllene (β-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-β-cyclodextrin (HPβCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and β-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and β-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the β-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and β-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and β-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.
Collapse
Affiliation(s)
- Luiza Alves Mendes
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| | - Loren Cristina Vasconcelos
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Milene Miranda Praça Fontes
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Geisiele Silva Martins
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Aline dos Santos Bergamin
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Matheus Alves Silva
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Rafael Resende Assis Silva
- Departament of Food Materials Science and Engineering, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil;
| | | | - Victor Gomes Lauriano Souza
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- MEtRICs, CubicB, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), University Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Róbson Ricardo Teixeira
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| | - Renata Pereira Lopes
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| |
Collapse
|
3
|
Cao C, Xie P, Zhou Y, Guo J. Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9-CD22). Foods 2023; 12:foods12102035. [PMID: 37238853 DOI: 10.3390/foods12102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Food safety issues are becoming increasingly important as a result of contamination with foodborne pathogenic bacteria. Plant essential oil is a safe and non-toxic natural antibacterial agent that can be used to develop antimicrobial active packaging materials. However, most essential oils are volatile and require protection. In the present study, LCEO and LRCD were microencapsulated through coprecipitation. The complex was investigated using GC-MS, TGA, and FT-IR spectroscopy. According to the experimental results, it was found that LCEO entered the inner cavity of the LRCD molecule and formed a complex with LRCD. LCEO had a significant and broad-spectrum antimicrobial effect against all five microorganisms tested. At 50 °C, the microbial diameter of the essential oil and its microcapsules showed the least change, indicating that this essential oil has high antimicrobial activity. In research on microcapsule release, LRCD has proven to be a perfect wall material for controlling the delayed release of essential oil and extending the duration of antimicrobial activity. LRCD effectively extends antimicrobial duration by encasing LCEO, thus improving its heat stability and antimicrobial activity. The results presented here indicate that LCEO/LRCD microcapsules can be further utilized in the food packaging industry.
Collapse
Affiliation(s)
- Chuan Cao
- Department of Food Inspection and Testing, College of Environment and Life Health, Anhui Vocational and Technical College, Hefei 230011, China
- Anhui Engineering Laboratory for Agro-Products Processing, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Peng Xie
- Department of Food Inspection and Testing, College of Environment and Life Health, Anhui Vocational and Technical College, Hefei 230011, China
- Department of Applied Economics, College of Grain and Supplies, Nanjing Finance and Economics, Nanjing 210023, China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-Products Processing, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Jing Guo
- Department of Food Inspection and Testing, College of Environment and Life Health, Anhui Vocational and Technical College, Hefei 230011, China
| |
Collapse
|
4
|
Miao W, Yue M, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Wang J, Jin Z. Interactions between plant-derived antioxidants and cyclodextrins and their application for improving separation, detection, and food quality issues. Crit Rev Food Sci Nutr 2023; 64:7085-7100. [PMID: 36798974 DOI: 10.1080/10408398.2023.2180479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Plant-derived antioxidants (PD-AOs) are important for food preservation, as well as for human health and nutrition. However, the poor chemical stability and water solubility of many PD-AOs currently limit their application as functional ingredients in foods and pharmaceuticals. Moreover, it is often difficult to isolate and detect specific antioxidants in multi-component systems, which again limits their potential in the food and medical industries. In this review, we highlight recent advances in the use of cyclodextrins (CDs) to overcome these limitations by forming simple, modified and competitive host-guest interactions with PD-AO. The host-guest properties of CDs can be used to enhance the separation efficiency of PD-AOs, as well as to improve their dispersion and stability in food systems. Moreover, the competitive complexation properties of CDs with target molecules can be used to selectively isolate PD-AOs from multi-component systems and develop detection technologies for PD-AOs. Overall, CD-antioxidant interactions have great potential for addressing isolation, detection, and food quality issues.
Collapse
Affiliation(s)
- Wenbo Miao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengyun Yue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - Shangyuan Sang
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Ogino M, Yamada K, Sato H, Onoue S. Enhanced nutraceutical functions of herbal oily extract employing formulation technology: The present and future. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Cen Q, Fu F, Xu H, Luo L, Huang F, Xiang J, Li W, Pan X, Zhang H, Zheng M, Zheng Y, Li Q, Lei B. Glycine assists in efficient synthesis of herbal carbon dots with enhanced yield and performance. J Mater Chem B 2022; 10:6433-6442. [PMID: 35984665 DOI: 10.1039/d2tb01334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a special type of biomass, herbal medicine often contains a variety of biologically active substances, and taking it as a carbon source, it is expected to produce various types of biologically functional carbon dots (CDs). However, there are few reports in this field, especially in achieving enhanced performance of CDs by improving the utilization efficiency of active substances in medicinal materials. In this work, by adding glycine as an auxiliary agent in the preparation of CDs from herbal medicine (Exocarpium Citri Grandis), the carboxyl and amino groups of the adjuvant provided more reactive sites, which greatly improved the yield of CDs (about 6 times). More importantly, the antioxidant and biological activities of herbal CDs were also improved. By controlling the functional groups of adjuvants, the effects of carboxyl and amino groups in adjuvants on the synthesis of herbal CDs were compared. The results reveal that both carboxyl and amino groups can react with the substances in the carbon source, and the influence of amino groups was greater. After adding glycine, the size of the CDs became larger, resulting from the more abundant functional groups on the carbon skeleton, which was the main reason for the improved performance of the CDs. Finally, the biological activity experiment demonstrated that CDs derived from Exocarpium Citri Grandis and glycine could greatly enhance the vitality of cells and activate immune cells, which are expected to be applied in the field of cell reproduction and biological immunity. The method proposed in this work provides a potential strategy for high-yield preparation of CDs from biomass.
Collapse
Affiliation(s)
- Qingyuan Cen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Fangmei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Hong Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Fanfan Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Jing Xiang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| | - Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, P. R. China
| | - Qingming Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Maoming, 525100, P. R. China
| |
Collapse
|
7
|
Preparation, Optimization, and Characterization of Inclusion Complexes of Cinnamomum longepaniculatum Essential Oil in β-Cyclodextrin. SUSTAINABILITY 2022. [DOI: 10.3390/su14159513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cinnamomum longepaniculatum essential oil (CLEO) possesses antibacterial, anti-inflammatory, and antioxidant activities. However, CLEO shows volatilization and poor solubility, which limits its application field. In this research, inclusion complexes of β-cyclodextrin (β-CD) with CLEO were produced, and its physicochemical properties were characterized. Response surface methodology was used to obtain optimum preparation conditions. A statistical model was generated to define the interactions among the selected variables. Results show that the optimal conditions were an H2O/β-CD ratio of 9.6:1 and a β-CD/CLEO ratio of 8:1, with the stirring temperature of 20 °C for the maximal encapsulation efficiency values. The physicochemical properties of CLEO/β-CD inclusion complexes (CLEO/β-CD-IC) were investigated. Fourier transform infrared spectroscopy showed that correlative characteristic bands of CLEO disappeared in the inclusion complex. X-ray diffraction presented different sharp peaks at the diffraction angle of CLEO/β-CD-IC. The thermogravimetric analysis demonstrated the thermal stability of CLEO was enhanced after encapsulation. Tiny aggregates with a smaller size of CLEO/β-CD-IC particles were observed by scanning electron microscopy. The comparison of β-CD, CLEO, and physical mixtures with CLEO/β-CD-IC confirmed the formation of inclusion complexes.
Collapse
|
8
|
Lin Y, Huang R, Sun X, Yu X, Xiao Y, Wang L, Hu W, Zhong T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
10
|
Guan T, Zhang G, Sun Y, Zhang J, Ren L. Preparation, characterization, and evaluation of HP-β-CD inclusion complex with alcohol extractives from star anise. Food Funct 2021; 12:10008-10022. [PMID: 34505612 DOI: 10.1039/d1fo02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The active compounds in star anise alcohol extractives (SAAE) have potent bioactivity. However, their poor solubility and stability limit their applications. In this study, SAAE/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared as a strategy to overcome the abovementioned disadvantages. The phase solubility results indicated that the solubility of the inclusion complex was enhanced. Complexation was confirmed by complementary methods, including Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and transmission electron microscopy, which proved to be extremely insightful for studying the inclusion formation phenomenon between SAAE and HP-β-CD. Despite there being no apparent improvements in the antioxidant capacity and antimicrobial activity, the results of the stability studies presented higher thermal, volatile, and photostability after encapsulation. Further, molecular modeling was used to investigate the factors influencing complex formation and provide the most stable molecular conformation. Thus, based on the obtained results, this study strongly demonstrates the potential of the SAAE/HP-β-CD inclusion complex in the food industry.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China. .,School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guangjie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Zhang Q, Liang D, Guo J, Guo R, Bi Y. Inclusion Complex of Sea Buckthorn Fruit Oil with β‐Cyclodextrin: Preparation Characterization and Antioxidant Activity. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Zhang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Dongyi Liang
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Juan Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Rui‐Xue Guo
- College of Food Science Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Yongguang Bi
- College of Pharmacy Guangdong Pharmaceutical University Guangzhou 510000 China
| |
Collapse
|
12
|
Cao C, Wei D, Xu L, Hu J, Qi J, Zhou Y. Characterization of tea tree essential oil and large-ring cyclodextrins (CD 9 -CD 22 ) inclusion complex and evaluation of its thermal stability and volatility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2877-2883. [PMID: 33155673 DOI: 10.1002/jsfa.10919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Although the structure and physicochemical properties of large ring cyclodextrins (LR-CDs) exhibit unique characteristics, and also possess very strong water solubility and high safety, little is known about the embedding performance of macrocyclodextrin. Encapsulation refers to a complex of tea tree oil (TTO) with the wall material, protecting the core material or changing its properties from adverse external factors, controlling its release rate against the evaporation and degradation of essential oils. In the present study, LR-CDs complexed with TTO were prepared by co-precipitation methods. RESULTS The mass ratio of LR-CDs-TTO was six and the maximum complexation efficiency was 86.23%. Fourier-transform infrared spectroscopy analysis presented the loss of characteristic peaks related to TTO in the complex and no other additional peaks were observed. X-ray diffraction examination demonstrated several sharp peaks and intensity peaks at the diffraction angle of the TTO-LR-CDs complex. 1 H-NMR indicated a chemical shift as a result of the interaction between the molecules in the inclusion complex. Moreover, the thermal stability and aqueous solubility of TTO were enhanced after synergy with LR-CDs; particularly, the solubility of the complex was increased by 329-fold. The volatile characteristics of the encapsulated and original TTO were identical. CONCLUSION The results of the present study show that TTO was efficaciously complexed with LR-CDs and exhibited enhanced solubility and thermal stability. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuan Cao
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
- Anhui Vocational College of Grain Engineering, Hefei, China
| | - Dongmei Wei
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Li Xu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jinwei Hu
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Yibin Zhou
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
13
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Zhang K, Ding Z, Duan W, Mo M, Su Z, Bi Y, Kong F. Optimized preparation process for naringenin and evaluation of its antioxidant and α‐glucosidase inhibitory activities. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kai Zhang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Zhendong Ding
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Weijie Duan
- Yunnan Provincial Hospital of Chinese Medicine Kunming PR China
| | - Mengmiao Mo
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Zhipeng Su
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Yongguang Bi
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| | - Fansheng Kong
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou PR China
| |
Collapse
|