1
|
Zhang Z, Xie X, Jia H, Le W, Xiang P. Effect of freeze-thaw treatment on the yield and quality of tiger nut oil. Food Chem X 2024; 23:101733. [PMID: 39246691 PMCID: PMC11377135 DOI: 10.1016/j.fochx.2024.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
To investigate the effect of freeze-thaw (FT) process on the yield and quality of tiger nut oil, tiger nuts were subjected to 0-12 cycles of FT treatment. Results indicated that FT treatment ruptured the cell structure of tiger nut, resulting in an increase in oil yield. Acid value (2.09-2.42 mg KOH/g) and peroxide value (0.40-0.42 mmol/kg) increased with the number of FT cycles, but the increments were small. Likewise, slight differences in fatty acid composition and thermal properties between control and FT-treated samples were observed. FT treatment remarkably increased the bioactive components (e.g., vitamin E, sterols, chlorophyll and carotenoids) in the oil and extended the oxidation induction time from 1.2 to 5.57 h. FT treatment altered the volatile composition of tiger nut oil, increasing the relative content of heterocycles and pyrazines such as 2-methoxy-4-vinylphenol, trimethylpyrazine and tetramethylpyrazine. It was suggested that FT treatment prior to oil extraction was beneficial to improve the oil yield and quality.
Collapse
Affiliation(s)
- Zhenshan Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xinyi Xie
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huijie Jia
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wu Le
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| | - Pengfei Xiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Xue Z, Liu J, Li Q, Yao Y, Yang Y, Ran C, Zhang Z, Zhou Z. Synthesis of lipoic acid ferulate and evaluation of its ability to preserve fish oil from oxidation during accelerated storage. Food Chem X 2023; 19:100802. [PMID: 37780313 PMCID: PMC10534146 DOI: 10.1016/j.fochx.2023.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Lipoic acid ferulate (LAF) was synthesized and its anti-free radical ability in vitro was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS) assays. Protective effects of LAF in stabilizing fish oil were tested, compared to antioxidants such as lipoic acid, ferulic acid and tert-butylhydroxyquinone (TBHQ) by measuring peroxide values, thiobarbituric acid reactants, p-anisidine values, nuclear magnetic resonance (NMR) spectra and gas chromatography-mass spectrometry (GC-MS) spectra of fish oil during accelerated storage (12 days, 80 °C). The inhibitory effect of these antioxidants on fish oil oxidation followed the order TBHQ ≧ LAF > ferulic acid > lipoic acid. In addition, the omega-3 polyunsaturated fatty acids were the first to be oxidized. The formation of oxidation products followed a first-order kinetic model, and the addition of LAF effectively reduced the reaction rate constants. Therefore, LAF can effectively slow down the formation of oxidative products and prolong the shelf life of fish oil.
Collapse
Affiliation(s)
- Zhiyong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Juan Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qing Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuanyuan Yao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yalin Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Ran
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430000, China
| |
Collapse
|
3
|
Liu X, Li Y, Liu Q, Du H, Ma G, Shen F, Hu Q. Mechanism of electron beam irradiation on the lipid metabolism of paddy during high temperature storage. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Sun J, Hu P, Lyu C, Tian J, Meng X, Tan H, Dong W. Comprehensive lipidomics analysis of the lipids in hazelnut oil during storage. Food Chem 2022; 378:132050. [PMID: 35032812 DOI: 10.1016/j.foodchem.2022.132050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 01/09/2023]
Abstract
Although hazelnut oil is is nutritious, it is easily oxidized during storage. Thus far, changes in lipids during storage have not been comprehensively analyzed. Here, we used ultra-high liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to dynamically monitor the lipid composition of hazelnut oil during accelerated storage for 24 d. A total of 10 subclasses of 103 lipids were identified. After 24 d, the content of triacylglycerol, diacylglycerol, phosphatidic acid, phosphatidylethanolamine, phosphatidylethanol, ceramide, and total lipids decreased significantly (P < 0.05). A total of 51 significantly different lipids were screened (Variable Importance in Projection > 1, P < 0.05), and these lipids could be used as biomarkers to distinguish fresh and oxidized hazelnut oil. We also detected seven most important pathways by bioinformatics analysis to explore the mechanism underlying changes. Our results provide useful information for future applications of hazelnut oil and provide new insight into edible oil oxidation.
Collapse
Affiliation(s)
- Jiayang Sun
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Pengpeng Hu
- College of Foreign Language Teaching Development, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Chunmao Lyu
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China.
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Dongling Road, Shenhe District, Shenyang 110866, China
| |
Collapse
|