1
|
Higuchi K, Nukagawa Y, Wakinaka T, Watanabe J, Mogi Y. Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. J Biosci Bioeng 2025; 139:23-29. [PMID: 39426905 DOI: 10.1016/j.jbiosc.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
In soy sauce brewing, the halophilic lactic acid bacterium, Tetragenococcus halophilus is used as a fermentation starter and contributes to the taste and aroma of soy sauce, mainly by producing lactate. By lowering the pH of the soy sauce mash, lactate serves as a suitable growth environment for the halotolerant yeast Zygosaccharomyces rouxii. Acetate, which is produced by T. halophilus via the citrate metabolic pathway, is a critical growth inhibitory factor for Z. rouxii. Therefore, a T. halophilus strain that lacks acetate production could be an ideal fermentation starter to enhance ethanol production. In this study, we obtained a derivative of T. halophilus containing an insertion sequence in citC, which is an essential gene for citrate metabolism, and validated its performance as a soy sauce fermentation starter. The derivative neither metabolized citrate nor produced excessive acetate in soy sauce mash, resulting in vigorous alcohol fermentation by Z. rouxii. This study provides insights into the application of a low acetate-producing strain of T. halophilus as a starter to produce soy sauce with high alcohol content and low sour aroma.
Collapse
Affiliation(s)
- Keita Higuchi
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan.
| | - Yuya Nukagawa
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Takura Wakinaka
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan
| | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan; Institute of Fermentation Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan
| |
Collapse
|
2
|
Miao X, Zhang R, Jiang S, Song Z, Du M, Liu A. Volatile flavor profiles of douchis from different origins and varieties based on GC-IMS and GC-O-QTOF/MS analysis. Food Chem 2024; 460:140717. [PMID: 39121761 DOI: 10.1016/j.foodchem.2024.140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The present study comprehensively characterized the flavor differences between different varieties of douchis from different origins using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) coupled with gas chromatography-olfactometry-quadrupole time-of-flight mass spectrometry (GC-O-QTOF/MS). A total of 91 volatile organic compounds (VOCs) were identified using HS-GC-IMS and 70 VOCs were identified using GC-O-QTOF/MS, mainly including acids, aldehydes, esters and alcohols. Additionally, 23 key aroma-presenting compounds were screened in five douchi species using relative odor activity value (ROAV) and the aroma compounds that contributed the most to the aroma varied among the five douchi species. Comparative analysis of the GC-IMS and GC-O-QTOF/ MS results yielded 13 VOCs that were detected by both techniques. Nonanal, hexanal, eucalyptol, 1-octen-3-ol, isoamyl acetate, and 2-pentylfuran were identified as key VOCs in the douchi species using both methods. These findings will provide deeper insights for exploring flavor differences in douchi from different geographic sources.
Collapse
Affiliation(s)
- Xiaoqing Miao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Rui Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhiyuan Song
- College of Food Science and Engineering, Dalian Ocean University, Liaoning, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Aidong Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
3
|
Byeon YS, Oh J, Ku KH, Kim MJ, Kim SS. Physicochemical Attributes Related to Sensory Characteristics of Long-Term Aged Korean Traditional Soy Sauce (Ganjang). Foods 2024; 13:3326. [PMID: 39456388 PMCID: PMC11507495 DOI: 10.3390/foods13203326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the physicochemical properties influencing the sensory characteristics of long-term aged ganjang. Eight ganjang samples aged 3, 10, and 15 years were obtained from three different manufacturers and analyzed for physicochemical characteristics, sensory profiles, and consumer acceptability. The proximate composition (moisture, ash, protein, and crude fat), total solids, salinity, acidity, pH, color (L, a, b, chrome, and hue), 27 free amino acids (FAAs), and volatile compounds were analyzed. Quantitative descriptive analysis was performed by 11 trained panelists for sensory profiles and 102 consumers evaluated consumer acceptability (overall, appearance, odor, taste/flavor, and mouthfeel). The results demonstrated a positive correlation between the aging period and increases in total solids, proteins, crude fat, acidity, color hue, FAA, major volatile compounds, and overall consumer acceptability. Specifically, correlation maps by partial least squares regression between descriptive attributes and FAAs or volatile compounds revealed that these components significantly affected consumer acceptability. Furthermore, sensory attributes such as color intensity, viscosity, sweetness, umami, and aftertaste were positively correlated with consumer preference, whereas attributes such as greenish-brown color, fish sauce-like flavor, and moldy notes were negatively correlated. Overall, these findings could be utilized to enhance the marketability and consumer appeal of long-term aged ganjang products by providing objective information supporting premium values.
Collapse
Affiliation(s)
- Yang Soo Byeon
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| | - Jungmin Oh
- Enterprise Solution Research Center, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.O.); (K.-H.K.)
| | - Kyung-Hyung Ku
- Enterprise Solution Research Center, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.O.); (K.-H.K.)
| | - Mi Jeong Kim
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea
| | - Sang Sook Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
| |
Collapse
|
4
|
Chen JH, Peng H, Wei S, Huang MJ, Tang R. An olfactory model for evaluating the larviposition preference of a vector fly. INSECT SCIENCE 2024. [PMID: 39054693 DOI: 10.1111/1744-7917.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Jing-Hua Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Min-Jun Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Sun R, Yang B, Yang C, Jin Y, Sui W, Zhang G, Wu T. Reduction of Beany Flavor and Improvement of Nutritional Quality in Fermented Pea Milk: Based on Novel Bifidobacterium animalis subsp. lactis 80. Foods 2024; 13:2099. [PMID: 38998605 PMCID: PMC11241321 DOI: 10.3390/foods13132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Peas (Pisum sativum L.) serve as a significant source of plant-based protein, garnering consumer attention due to their high nutritional value and non-GMO modified nature; however, the beany flavor limits its applicability. In this study, the effects of Bifidobacterium animalis subsp. Lactis 80 (Bla80) fermentation on the physicochemical characteristics, particle size distribution, rheological properties, and volatile flavor compounds of pea milk was investigated. After fermentation by Bla80, the pH of pea milk decreased from 6.64 ± 0.01 to 5.14 ± 0.01, and the (D4,3) distribution decreased from 142.4 ± 0.47 μm to 122.7 ± 0.55 μm. In addition, Lactic acid bacteria (LAB) fermentation significantly reduced the particle size distribution of pea milk, which was conducive to improving the taste of pea milk and also indicated that Bla80 had the probiotic potential of utilizing pea milk as a fermentation substrate. According to GC-MS analysis, 64 volatile compounds were identified in fermented pea milk and included aldehydes, alcohols, esters, ketones, acids, and furans. Specifically, aldehydes in treated samples decreased by 27.36% compared to untreated samples, while esters, ketones, and alcohols increased by 11.07%, 10.96%, and 5.19%, respectively. These results demonstrated that Bla80 fermentation can significantly decrease the unpleasant beany flavor, such as aldehydes and furans, and increase fruity or floral aromas in treated pea milk. Therefore, Bla80 fermentation provides a new method to improve physicochemical properties and consumer acceptance of fermented pea milk, eliminating undesirable aromas for the application of pea lactic acid bacteria beverage.
Collapse
Affiliation(s)
- Ronghao Sun
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bochun Yang
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Conghao Yang
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Guohua Zhang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- Engineering Research Center of Food Biotechnology, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
6
|
Uddin J, Yasmin S, Kamal GM, Asmari M, Saqib M, Chen H. Changes in Metabolite Profiles of Chinese Soy Sauce at Different Time Durations of Fermentation Studied by 1H-NMR-Based Metabolomics. Metabolites 2024; 14:285. [PMID: 38786762 PMCID: PMC11123076 DOI: 10.3390/metabo14050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Fermentation parameters, especially the duration, are important in imparting a peculiar taste and flavor to soy sauce. The main purpose of this research was to monitor metabolic changes occurring during the various time intervals of the fermentation process. NMR-based metabolomics was used to monitor the compositional changes in soy sauce during fermentation. The 1H-NMR spectra of the soy sauce samples taken from the fermentation tanks at 0 to 8 months were analyzed using 1H-NMR spectroscopy, and the obtained spectra were analyzed by multivariate statistical analysis. The Principal Component Analysis (PCA) and Partial Least Square Discriminate analysis (PLSDA) revealed the separation of samples fermented for various time durations under identical conditions. Key metabolites shown by corresponding loading plots exhibited variations in amino acids (lysine, threonine, isoleucine, etc.), acetate, glucose, fructose, sucrose, ethanol, glycerol, and others. The levels of ethanol in soy sauce increased with longer fermentation durations, which can be influenced by both natural fermentation and the intentional addition of ethanol as a preservative. The study shows that the variation in metabolite can be very efficiently monitored using 1H-NMR-based metabolomics, thus suggestion to optimize the time duration to get the soy sauce product with the desired taste and flavor.
Collapse
Affiliation(s)
- Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Samra Yasmin
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Innovation Academy of Precision Measurement Science & Technology, University of Chinese Academy of Sciences Beijing, Wuhan 430071, China
| | - Mufarreh Asmari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Muhammad Saqib
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Heyu Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
7
|
Wang LH, Qu WH, Xu YN, Xia SG, Xue QQ, Jiang XM, Liu HY, Xue CH, Wen YQ. Developing a High-Umami, Low-Salt Soy Sauce through Accelerated Moromi Fermentation with Corynebacterium and Lactiplantibacillus Strains. Foods 2024; 13:1386. [PMID: 38731757 PMCID: PMC11083161 DOI: 10.3390/foods13091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Wen-Hui Qu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Ya-Nan Xu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Song-Gang Xia
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Qian-Qian Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
| | - Xiao-Ming Jiang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hong-Ying Liu
- Ocean College, Hebei Agriculture University, Qinhuangdao 066000, China;
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Yun-Qi Wen
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266400, China; (L.-H.W.); (W.-H.Q.); (Y.-N.X.); (S.-G.X.); (Q.-Q.X.); (X.-M.J.); (C.-H.X.)
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| |
Collapse
|
8
|
Wu Z, Chao J, Tang H, Liu T, Jiang L, Liu Y. Characterization of key aroma-active compounds in different types of Douchi based on molecular sensory science approaches. Food Chem X 2024; 21:101170. [PMID: 38357375 PMCID: PMC10865218 DOI: 10.1016/j.fochx.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
To attain the differences in the flavor profile of Douchi, the key aroma-active compounds of three types of Douchi were investigated. The "Sauce-like", "Smoky", "Nutty", "Roast", "Caramel", and "Flower" of Douchi were favored by customers. Further, a total of 179 volatile compounds were identified using HS-SPME-GC-MS, and 29 aroma compounds were detected using GC-O-MS. Based on the quantification, 9, 13, and 10 compounds were regarded as aroma-active compounds in Yangjiang Douchi (YJ), Pingjiang Douchi (PJ), and Liuyang Douchi (LY), respectively. Moreover, the mixture of these aroma-active compounds successfully simulated the main aromas of PJ, LY, and YJ. And omission experiments confirmed that guaiacol was the key aroma compound for LY, benzene acetaldehyde, dimethyl trisulfide, and 2-acetyl pyrrole were important for YJ, benzene acetaldehyde and 3,5-diethyl-2-methyl pyrazine notably contributed to key aroma of PJ.
Collapse
Affiliation(s)
- Ziqian Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jin Chao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Hunan Tea Group Corporation Limited, Changsha 410128, China
| | - Hui Tang
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong 512005, China
| | - Tengxia Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong 512005, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| |
Collapse
|
9
|
Liu H, Chen X, Lu J, Wu D. Evaluation of the differences between low-salt solid-state fermented soy sauce and high-salt diluted-state fermented soy sauce in China: from taste-active compounds and aroma-active compounds to sensory characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:340-351. [PMID: 37574531 DOI: 10.1002/jsfa.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The present study aimed to determine the components related to sensory properties in soy sauce and to characterize the differences between low-salt solid-state fermented soy sauce (LSFSS) and high-salt diluted-state fermented soy sauce (HDFSS). The taste and aroma active components of 18 commercially available soy sauces (eight types of LSFSS and 10 types of HDFSS) were characterized. The relationship between these compounds, soy sauce samples, and sensory properties was modeled by partial least squares regression. RESULTS The analysis showed that the 11 taste-active components, including glutamic acid, glycine, alanine, threonine, malic acid, citric acid, tartaric acid, acetic acid, lactic acid, reducing sugar and salt, contributed greatly to the taste of soy sauce. In addition, umami, saltiness and sweetness are the characteristic tastes of HDFSS, whereas sourness and bitterness were the characteristic tastes of LSFSS. At the same time, seven aroma-active compounds, namely 4-ethyl-2-methoxyphenol, ethanol, 3-methyl-1-butanol, ethyl acetate, 2-phenethyl alcohol, 3-methyl thiopropanol and 2-ethyl-4-hydroxy-5-methylfuran-3-one, played a decisive role in the flavor of soy sauce. In addition, HDFSS presented the aroma attributes of smoky, alcoholic, floral, fruity and caramel-like, whereas LSFSS mainly presented sour and malty aroma attributes. CONCLUSION The present study reveals new insight into the relationship between the chemical composition and sensory characteristics of soy sauce, which is of great significance for developing an objective measurement system and providing a theoretical basis to improve the sensory quality of soy sauce. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Food Biotechnology Research Institute of Jiangnan University (Rugao), Rugao, China
| | - Xingguang Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Food Biotechnology Research Institute of Jiangnan University (Rugao), Rugao, China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Cheng W, Chen X, Lan W, Liu G, Xue X, Li R, Pan T, Li N, Zhou D, Chen X. Insights into the influence of physicochemical parameters on the microbial community and volatile compounds during the ultra-long fermentation of compound-flavor Baijiu. Front Microbiol 2023; 14:1272559. [PMID: 37965554 PMCID: PMC10641013 DOI: 10.3389/fmicb.2023.1272559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction While the variation in physicochemical parameters, microbial communities, metabolism, composition, and the proportion of volatile components in fermented grains (FG) affect final Baijiu quality, their complex interactions during the ultra-long fermentation of compound-flavor Baijiu (CFB) are still poorly understood. Methods In this study, amplicon sequencing was used to analyze the microbial community, and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to analyze the volatile components in FG during ultra-long fermentation of CFB. The relationships between the dominant microbial communities, physicochemical parameters, and volatile components were analyzed using redundancy analysis and network analysis. Results During ultra-long fermentation, bacterial diversity was initially higher than during the mid and late stages. Fungal diversity in the mid stages was higher than that initially and later in the process. A total of 88 volatile components, including six alcohols, 43 esters, eight aldehydes and ketones, 13 acids, and 18 other compounds were detected in FG. Starch and reducing sugars in FG strongly affected the composition and function of bacterial and fungal communities. However, acidity had little effect on the composition and function of the bacterial flora. Lactobacillus, Bacillus, Weissella, and Pichia were the core microbial genera involved in metabolizing the volatile components of FG. Discussion We provide insights into the relationships and influences among the dominant microbial communities, physicochemical parameters, and volatile components during ultra-long fermentation of CFB. These insights help clarify the fermentation mechanisms of solid-state fermentation Baijiu (SFB) and control and improve the aroma quality of CFB.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Gengdian Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Xijia Xue
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Tianquan Pan
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Na Li
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| | - Duan Zhou
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Xingjie Chen
- Technology Center of Enterprise, Jinzhongzi Distillery Co., Ltd., Fuyang, China
| |
Collapse
|
11
|
Sun XH, Qi X, Han YD, Guo ZJ, Cui CB, Lin CQ. Characteristics of changes in volatile organic compounds and microbial communities during the storage of pickles. Food Chem 2023; 409:135285. [PMID: 36586248 DOI: 10.1016/j.foodchem.2022.135285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The variations of volatile organic compounds (VOCs) and microbial communities of three pickles during storage at 4°C for one week were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), high-throughput sequencing, and Spearman correlation analysis. A total of 50 VOCs were identified from three pickles. During storage, most alcohols, aldehydes, ketones, and esters decreased, while acids increased, and sulfides, alkenes, and phenols were relatively equal. Firmicutes, Cyanobacteria, and Proteobacteria were the predominant bacterial phyla, and Weissella, Streptophyta, Leuconostoc, Bacillariophyta, and Lactobacillus were the predominant bacterial genera in three pickles. The bacterial diversity level significantly decreased during storage (P < 0.05). Spearman correlation coefficient indicated that Leuconostoc, Lactobacillus, and Weissella were highly correlated with the flavor of pickles, while Bacillariophyta and Streptophyta were highly correlated with the flavor formation of pickles during storage. These results could contribute to a better understanding of the impact of bacteria in flavor formation during pickle storage.
Collapse
Affiliation(s)
- Xi-Han Sun
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China
| | - Xin Qi
- Pharma College, Yanbian University, Yanji, Jilin 133000, China
| | - Yu-di Han
- Convergence College, Yanbian University, Yanji, Jilin 133000, China
| | - Zhi-Jun Guo
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China
| | - Cheng-Bi Cui
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Pharma College, Yanbian University, Yanji, Jilin 133000, China; Convergence College, Yanbian University, Yanji, Jilin 133000, China; Key Laboratory of Natural Medicine Research of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133000, China.
| | - Chang-Qing Lin
- Medical College, Yanbian University, Yanji, Jilin 133000, China.
| |
Collapse
|
12
|
Hu G, Chen J, Du G, Fang F. Moromi mash dysbiosis trigged by salt reduction is relevant to quality and aroma changes of soy sauce. Food Chem 2023; 406:135064. [PMID: 36462362 DOI: 10.1016/j.foodchem.2022.135064] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Health concerns related to excessive salt consumption have increased the demand for foods with reduced salt content. However, it is a challenge to perform low salt fermentation of high salt liquid-state (HSL) soy sauce due to the interplay between salt and microorganisms. In this study, ≤12 % (w/v) NaCl led to failed fermentation of HSL soy sauce. At 9 % (w/v) NaCl, amino acid nitrogen decreased to 0.31 g/100 mL, total acid increased to 10.1 g/L, and biogenic amines increased to 904.49 mg/L. With reduced salt, the total number of bacteria (1-2 orders of magnitude) and spoilage bacteria (Bacillus, Kurthia, Staphylococcus saprophyticus, and Lactobacillus pobuzihii) increased, and the total number of functional microorganisms (Weissella, Zygosaccharomyces, and Candida) decreased. Unacceptable volatiles contents were higher in reduced-salt soy sauce than in normal salt soy sauce. Most of the unacceptable volatiles were positively correlated with spoilage bacteria.
Collapse
Affiliation(s)
- Guangyao Hu
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China.
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Jiangsu, Wuxi 214122, China.
| | - Fang Fang
- Science Center for Future Foods, Jiangnan University, Jiangsu, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Jiangsu, Wuxi 214122, China.
| |
Collapse
|
13
|
Li J, Peng B, Huang L, Zhong B, Yu C, Hu X, Wang W, Tu Z. Association between flavors and microbial communities of traditional Aspergillus-Douchi produced by a typical industrial-scale factory. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Zhang P, Tang F, Cai W, Zhao X, Shan C. Evaluating the effect of lactic acid bacteria fermentation on quality, aroma, and metabolites of chickpea milk. Front Nutr 2022; 9:1069714. [PMID: 36545467 PMCID: PMC9760965 DOI: 10.3389/fnut.2022.1069714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Legumes are an attractive choice for developing new products since their health benefits. Fermentation can effectively improve the quality of soymilk. This study evaluated the impact of Lactobacillus plantarum fermentation on the physicochemical parameters, vitamins, organic acids, aroma substances, and metabolites of chickpea milk. The lactic acid bacteria (LAB) fermentation improved the color, antioxidant properties, total phenolic content, total flavonoid content, lactic acid content, and vitamin B6 content of raw juice. In total, 77 aroma substances were identified in chickpea milk by headspace solid-phase microextraction with gas chromatography/mass spectrometry (HS-SPME-GC-MS); 43 of the 77 aroma substances increased after the LAB fermentation with a significant decrease in beany flavor content (p < 0.05), improving the flavor of the soymilk product. Also, a total of 218 metabolites were determined in chickpea milk using non-targeted metabolomics techniques, including 51 differentially metabolites (28 up-regulated and 23 down-regulated; p < 0.05). These metabolites participated in multiple metabolic pathways during the LAB fermentation, ultimately improving the functional and antioxidant properties of fermented soymilk. Overall, LAB fermentation can improve the flavor, nutritional, and functional value of chickpea milk accelerating its consumer acceptance and development as an animal milk alternative.
Collapse
|
15
|
Effect of Adding Bifidobacterium animalis BZ25 on the Flavor, Functional Components and Biogenic Amines of Natto by Bacillus subtilis GUTU09. Foods 2022; 11:foods11172674. [PMID: 36076859 PMCID: PMC9455604 DOI: 10.3390/foods11172674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Natto is a high-value fermented soybean produced by B. subtilis. However, B. subtilis produces a pungent amine odor. This study compared the volatile organic compounds (VOCs), free amino acids (FAAs) and biogenic amines (BAs), nattokinase (NK) of natto made by two-strain fermentation with Bifidobacterium animalis BZ25 and Bacillus subtilis GUTU09 (NMBB) and that of natto made by single-strain fermentation with Bacillus subtilis GUTU09 (NMB). Compared with NMB, volatile amine substances disappeared, ketones and aldehydes of NMBB were reduced, and alcohols increased. Besides that, the taste activity value of other bitter amino acids was lowered, and BA content was decreased from 255.88 mg/kg to 238.35 mg/kg but increased NK activity from 143.89 FU/g to 151.05 FU/g. Correlation analysis showed that the addition of BZ25 reduced the correlation between GUTU09 and BAs from 0.878 to 0.808, and pH was changed from a positive correlation to a negative one. All these results showed that the quality of natto was improved by two-strain co-fermentation, which laid a foundation for its potential industrial application.
Collapse
|
16
|
Deng W, Wang M, Li Z, Liu G, Liu Z, Yu H, Liu J. Effect of the changs of microbial community on flavor components of traditional soybean paste during storage period. Food Res Int 2022; 161:111866. [DOI: 10.1016/j.foodres.2022.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
17
|
Chen YP, Wu HT, Hwang IE, Chen FF, Yao JY, Yin Y, Chen MY, Liaw LL, Kuo YC. Identification of the high-yield monacolin K strain from Monascus spp. and its submerged fermentation using different medicinal plants. BOTANICAL STUDIES 2022; 63:20. [PMID: 35779152 PMCID: PMC9250582 DOI: 10.1186/s40529-022-00351-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Medical plants confer various benefits to human health and their bioconversion through microbial fermentation can increase efficacy, reduce toxicity, conserve resources and produce new chemical components. In this study, the cholesterol-lowering monacolin K genes and content produced by Monascus species were identified. The high-yield monacolin K strain further fermented with various medicinal plants. The antioxidant and anti-inflammatory activities, red pigment and monacolin K content, total phenolic content, and metabolites in the fermented products were analyzed. RESULTS Monacolin K was detected in Monascus pilosus (BCRC 38072), and Monascus ruber (BCRC 31533, 31523, 31534, 31535, and 33323). It responded to the highly homologous mokA and mokE genes encoding polyketide synthase and dehydrogenase. The high-yield monacolin K strain, M. ruber BCRC 31535, was used for fermentation with various medicinal plants. A positive relationship between the antioxidant capacity and total phenol content of the fermented products was observed after 60 days of fermentation, and both declined after 120 days of fermentation. By contrast, red pigment and monacolin K accumulated over time during fermentation, and the highest monacolin K content was observed in the fermentation of Glycyrrhiza uralensis, as confirmed by RT-qPCR. Moreover, Monascus-fermented medicinal plants including Paeonia lactiflora, Alpinia oxyphylla, G. uralensis, and rice were not cytotoxic. Only the product of Monascus-fermented G. uralensis significantly exhibited the anti-inflammatory capacity in a dose-dependent manner in lipopolysaccharide-induced Raw264.7 cells. The metabolites of G. uralensis with and without fermentation (60 days) were compared by LC/MS. 2,3-Dihydroxybenzoic acid, 3,4-dihydroxyphenylglycol, and 3-amino-4-hydroxybenzoate were considered to enhance the antioxidant and anti-inflammatory ability. CONCLUSIONS Given that highly homologous monacolin K and citrinin genes can be observed in Monascus spp., monacolin K produced by Monascus species without citrinin genes can be detected through the complementary methods of PCR and HPLC. In addition, the optimal fermentation time was important to the acquisition of antioxidants, red pigment and monacolin K. These bioactive substances were significantly affected by medicinal plants over fermentation time. Consequently, Monascus-fermented G. uralensis had a broad spectrum of biological activities.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Hong-Tan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ing-Er Hwang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, HsinChu, Taiwan
| | - Fang-Fang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Jeng-Yuan Yao
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Department of Basic Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yiling Yin
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Meng-Yun Chen
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Department of Medical Technology, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Li-Ling Liaw
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, HsinChu, Taiwan
| | - Yang-Cheng Kuo
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, HsinChu, Taiwan.
| |
Collapse
|
18
|
Wang A, Xiao T, Xi H, Qin W, He Y, Nie M, Chen Z, Wang L, Liu L, Wang F, Tong LT. Edible qualities, microbial compositions and volatile compounds in fresh fermented rice noodles fermented with different starter cultures. Food Res Int 2022; 156:111184. [DOI: 10.1016/j.foodres.2022.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
|
19
|
Ling H, Shi H, Chen X, Cheng K. Detection of the microbial diversity and flavour components of northeastern Chinese soybean paste during storage. Food Chem 2022; 374:131686. [PMID: 34906801 DOI: 10.1016/j.foodchem.2021.131686] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
A combination of 16S rDNA and GC-IMS was used to study the changes in the composition of microorganisms and volatile organic compounds (VOCs) during the storage of northeastern Chinese soybean paste. Firmicutes and Actinobacteriota dominated the microbial communities of the soybean paste at the phylum level, bacterial profiles of different samples were different at genus level. Fifty-one VOCs were identified from soybean paste, most of which existed in the early storage stage. Most esters and alcohols decreased with the extension of the storage time, while acids and pyrazines accumulated in the later period of storage. Esters, alcohols, acids and aldehyde compounds are the key substances in the volatile components of soybean paste, which give the soybean paste the sour, sweet, rose, mushroom and smoky flavor characteristics. The biomarker Bacillus-velezensis in soybean paste is directly related to ester features; Kroppenstedtia, Sporolactobacillus-nakayamae, and Corynebacterium-stationis are positively associated with the biosynthesis of aldehydes.
Collapse
Affiliation(s)
- Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Huiling Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
| | - Xiaochun Chen
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Institute of Technology Innovation, Dongguan 523000, China
| | - Keke Cheng
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
20
|
Ruan L, Ju Y, Zhan C, Hou L. Improved umami flavor of soy sauce by adding enzymatic hydrolysate of low-value fish in the natural brewing process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Gao X, Feng T, Sheng M, Wang B, Wang Z, Shan P, Zhang Y, Ma H. Characterization of the aroma-active compounds in black soybean sauce, a distinctive soy sauce. Food Chem 2021; 364:130334. [PMID: 34174649 DOI: 10.1016/j.foodchem.2021.130334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
Black soybean sauce's (BSS) aroma was scarcely investigated, which seriously affected BSS's quality and consumers' preference. Thus the aroma compounds in BSS were characterized using gas chromatography-mass spectrometry/gas chromatography-olfactometry coupling with recombination and omission experiments. Sensory evaluation showed the fruity odor was increased by 63% and the malty, alcoholic, floral, smoky, caramel-like and sour odors were decreased by 24-35% when compared to the control soy sauce (SS, p < 0.05). Totally, 126 volatile compounds, 44 aroma-active compounds and 22 vital aroma-active compounds were identified in BSS. Compared to SS, BSS exhibited a distinctive aroma characteristics which was caused by significantly higher odor activity values (OAVs) of 3-methylbutyl acetate (357%), ethyl propanoate (144%), ethyl 3-methylbutanoate (70%), ethyl 2-methylbutanoate (102%) and lower OAVs of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (52%), 4-hydroxy-2-ethyl-5-methyl-3(2H)-furan-3-one (50%), ethanol (48%), 4-vinylguaiacol (41%), 3-methylthiopropanal (37%), 3-methylbutanol (33%), 4-ethylguaiacol (28%). The results would contribute to BSS's quality control and aroma improvement.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Tuo Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Mingjian Sheng
- Honworld Group Limited, 299 Zhongxing Avenue, 313000 Huzhou, China
| | - Bo Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pei Shan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yaqiong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
22
|
Tang J, Liu Y, Lin B, Zhu H, Jiang W, Yang Q, Chen S. Effects of ultra-long fermentation time on the microbial community and flavor components of light-flavor Xiaoqu Baijiu based on fermentation tanks. World J Microbiol Biotechnol 2021; 38:3. [PMID: 34817705 PMCID: PMC8611178 DOI: 10.1007/s11274-021-03183-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 01/19/2023]
Abstract
Microbial structure and succession of fermented grains play a significant role in Baijiu's flavor and quality. In this study, high-throughput sequencing (HTS) coupled with headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to analyze the microbial community structures and flavor components in the fermented grains at the end of fermentation from different fermentation time of light-flavor Xiaoqu Baijiu. HTS results showed that Lactobacillus acetotolerans, Lactobacillus helveticus, Lactobacillus buchneri, Wickerhamomyces, Saccharomyces, and Condenascus were identified as the dominant microbes, but Lactobacillus (96.28%) exhibited obvious advantages at the end of ultra-long fermentation time (day 98). HS-SPME-GC-MS analysis revealed that esters and alcohols had the most abundance in fermented grains of day 98, containing high concentrations of ethyl acetate, diethyl succinate, phenylethyl alcohol, isoamyl alcohol, and n-propanol, which were related to the succession of Lactobacillus and yeast communities. Interestingly, the content of n-propanol in the ultra-long fermentation time samples (day 98) was 6 times of that in normal fermented grains (day 14), which may be caused by higher abundance of Lactobacillus in day 98 samples. Monte Carlo permutation test showed residual starch, acidity, and amino nitrogen (p < 0.05) were important factors affecting the microbial community. Together, these results shed light on the physicochemical changes, microbial dynamics, and key flavor components of fermented grains at the end of fermentation from different fermentation time and provide a strategy for further improvement of Baijiu quality.
Collapse
Affiliation(s)
- Jie Tang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Bin Lin
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Hao Zhu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Wei Jiang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China.
| | - Shenxi Chen
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, 435100, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Chen Y, Li P, Liao L, Qin Y, Jiang L, Liu Y. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem 2021; 361:130055. [PMID: 34023693 DOI: 10.1016/j.foodchem.2021.130055] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/06/2023]
Abstract
The present study investigates volatile organic compound (VOC) compositional changes in Liuyang Douchi during fermentation via a HS-GC-IMS and HS-SPME-GC-MS combination approach. A total of 115 VOCs were identified from Douchi, most of which were accumulated during pile fermentation. Notably, most alcohols and acids decreased with fermentation, while esters, ketones, pyrazines, and phenols accumulated during pile fermentation. Depending on the VOCs identified by GC-IMS/MS, the different fermentation stages of Douchi could be facilely distinguished. Of these, 49 VOCs were regarded as the marker VOCs of Douchi in different fermentation stage: hexanol, hexanal, and propanoic acid was the marker VOCs of the black beans before fermentation and contributing beany and grassy odors; 1-octen-3-ol and 3-octanone supplying a mushroom aroma to the Douchi fermented for 3-9 days; and esters and pyrazine, especially ethyl acetate and 2,6-dimethylpyrazine, contributing the cocoa, fruity, and nutty aromas of matured Douchi.
Collapse
Affiliation(s)
- Yi Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yeyou Qin
- Hunan Tantanxiang Biotechnology Co. Ltd, Changsha 410128, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China.
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
24
|
Diez-Simon C, Eichelsheim C, Jacobs DM, Mumm R, Hall RD. Stir bar sorptive extraction of aroma compounds in soy sauce: Revealing the chemical diversity. Food Res Int 2021; 144:110348. [PMID: 34053541 DOI: 10.1016/j.foodres.2021.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Fermented soy sauce is used worldwide to enhance the flavour of many dishes. Many types of soy sauce are on the market, and their differences are mostly related to the country of origin, the production process applied and the ratio of ingredients used. Consequently, several aromas, tastes, colours, and textures are obtained. Nowadays, soy sauce can also be produced without microorganisms making the process shorter and cheaper. However, flavour may be lost. We have carried out a comprehensive metabolomics analysis of volatile compounds using stir bar sorptive extraction (SBSE)-GC-MS to relate differences in volatile content to production history and origin. The results revealed major differences between fermented and non-fermented soy sauces, and a list of volatile compounds is reported as being characteristic of each type. This study was able to relate volatiles to the production process using SBSE-GC-MS and to aroma characteristics using GC-O-MS.
Collapse
Affiliation(s)
- Carmen Diez-Simon
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, Leiden 2333 CC, the Netherlands.
| | - Charlotte Eichelsheim
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Doris M Jacobs
- Unilever Foods Innovation Centre, Bronland 14, Wageningen 6708 WH, the Netherlands
| | - Roland Mumm
- Netherlands Metabolomics Centre, Einsteinweg 55, Leiden 2333 CC, the Netherlands; Wageningen Plant Research (Bioscience), Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands
| | - Robert D Hall
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, Leiden 2333 CC, the Netherlands; Wageningen Plant Research (Bioscience), Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
25
|
Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F. Application of gas chromatography–mass spectrometry (GC‐MS)‐based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14794] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Samson Adeoye Oyeyinka
- School of Agriculture and Food Technology Alafua Campus University of the South Pacific Suva Fiji
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Xi Feng
- Department of Nutrition Food Science and Packaging San Jose State University One Washington Square San Jose CA95192USA
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science School of Applied Sciences Abertay University Dundee United Kingdom
| | - Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P. O. Box 524Bunting Road Campus Johannesburg South Africa
| | - Adrian Mark Abrahams
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg Doornfontein Campus GautengP.O. Box 17011South Africa
| | - Fidele Tugizimana
- International R&D Omnia Group, Ltd P.O. Box 69888 Gauteng South Africa
| |
Collapse
|
26
|
Nedele AK, Gross S, Rigling M, Zhang Y. Reduction of green off-flavor compounds: Comparison of key odorants during fermentation of soy drink with Lycoperdon pyriforme. Food Chem 2020; 334:127591. [PMID: 32721838 DOI: 10.1016/j.foodchem.2020.127591] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/02/2023]
Abstract
The consumption of soy drink in Western countries is limited due to its green off-flavor. Hence, fermentation of soy drink with Lycoperdon pyriforme to tailor the aroma has been investigated. After 28 h the green off-flavor was not perceived by 60% of the sensory panel (n = 23). Molecular sensory changes of soy drink during fermentation were decoded by means of direct immersion-stir bar sorptive extraction coupled with gas chromatography-mass spectrometry-olfactometry and aroma dilution analysis. The semi-quantification of key odorants revealed a significant decrease of the representative green odorants (i.e., hexanal, (E)-2-nonenal, (E,E)-2,4-decadienal) of soy drink, among of which hexanal even turned below its odor threshold. The quantitative reduction of these odorants correlated with the organoleptic difference. Besides that, nutritionally relevant parameters of soy drink including protein, fat, and polyphenol content kept consistent during the short fermentation process.
Collapse
Affiliation(s)
- Ann-Kathrin Nedele
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| | - Sophie Gross
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| | - Marina Rigling
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| |
Collapse
|