1
|
Wang X, Lin S, Wang R, Chu J, Dong L, Zhang S. Enhancing gel behavior of yellow croaker surimi by fruit extracts: Physicochemical properties and molecular mechanism. J Texture Stud 2023. [PMID: 37921240 DOI: 10.1111/jtxs.12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
The aim of this study was to investigate the effects of grape seed extract (GSE), acerola cherry extract (ACE), and blueberry extract (BBE) on the physicochemical properties and structure of the yellow croaker surimi gel. In addition, molecular docking and molecular dynamics (MD) simulation were utilized to study the binding mechanism of yellow croaker's fibrillin and fruit extracts. Surimi gel with 1.5% GSE, ACE, and BBE had the highest water holding capacity, hardness, chewability, cohesion, breaking force, breaking distance, gel strength, and densest 3D network structure, according to the experiment's findings. Nevertheless, the cross-linking of proteins in surimi was blocked with the further increase of fruit extract (1.5%-2.0%), and the existing network of surimi was weakened or even destroyed. Three fruit extracts had little effect on the secondary structure of the surimi gel. Besides, hydrophobic and disulfide bonds are the main chemical bonds of croaker surimi. Molecular docking showed that B-type procyanidine (BP) interacted with ASN-183, SER-571, ASP-525, ARG-350, LYS-188, GLU-349, CYS-353, and other active amino acids in croaker protein. Moreover, it can form strong hydrogen bond interaction with ASN-183, SER-571, ASP-525, and ARG-350 at the active sites of protein. The BP-Larimichthys crocea protein system's MD simulation was carried out, and calculations for the simulation's root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area, and hydrogen bonds were made. It was found that these indices can demonstrate that the BP binding contributes to the stability of the yellow croaker structure.
Collapse
Affiliation(s)
- Xinyan Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Ruichun Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Junbo Chu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Liu Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, People's Republic of China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian, People's Republic of China
| |
Collapse
|
2
|
Zhang S, Wang R, Chu J, Sun C, Lin S. Vegetable extracts: Effective inhibitors of heterocyclic aromatic amines and advanced glycation end products in roasted Mackerel. Food Chem 2023; 412:135559. [PMID: 36708673 DOI: 10.1016/j.foodchem.2023.135559] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/29/2022] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
The formation of hazardous substances, heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs), in roasted mackerel with different cooking temperatures (180, 210, 240 °C) and vegetable extracts (celery, carrot and yam extracts) in a preheated oven was investigated. The results indicated that the introduction of vegetable extracts had inhibitory effects on HAAs and AGEs during thermal processing, especially celery extracts. Benefiting from the addition of vegetable extracts, the roasted mackerel keep high quality against lipid/protein oxidation, avoids nutrition loss of polyunsaturated fatty acids, and flavor is promoted. We also examined the variation of key precursors, including creatine, creatinine, reducing sugars, amino acids and attempted to explain the molecular pathway of inhibition of the formation of the hazardous substances by vegetable extracts. The results provide theoretical support to develop technologies for inhibiting hazardous substances formation during fish processing, which is important for food manufacturers and consumers for producing healthier meat products.
Collapse
Affiliation(s)
- Simin Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Ruichun Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Junbo Chu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chenyang Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
3
|
Park JJ, Olawuyi IF, Lee WY. Effect of combined
UV
‐thermosonication and
Ecklonia cava
extract on advanced glycation end‐products in soymilk. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jong Jin Park
- School of Food Science and Technology Kyungpook National University Daegu South Korea
- Coastal Agricultural Research Institute, Kyungpook National University Daegu South Korea
| | | | - Won Young Lee
- School of Food Science and Technology Kyungpook National University Daegu South Korea
- Research Institute of Tailored Food Technology, Kyungpook National University Daegu South Korea
| |
Collapse
|
4
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Vilkickyte G, Motiekaityte V, Vainoriene R, Raudone L. Promising cultivars and intraspecific taxa of lingonberries (Vaccinium vitis-idaea L.): profiling of phenolics and triterpenoids. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Vilkickyte G, Petrikaite V, Pukalskas A, Sipailiene A, Raudone L. Exploring Vaccinium vitis-idaea L. as a potential source of therapeutic agents: antimicrobial, antioxidant, and anti-inflammatory activities of extracts and fractions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115207. [PMID: 35306039 DOI: 10.1016/j.jep.2022.115207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vaccinium vitis-idaea L. (lingonberry) leaves and fruits have traditionally been used in Asian and European countries as a natural solution for urinary tract infections, gastrointestinal distress, neurodegenerative diseases, and related inflammatory disorders, which are overall associated with free radical damage and presence of triggering pathogenic strains in the human body. Considering growing attention to natural products, there are not enough scientific data to confirm predominant specialized metabolites, responsible for the traditional therapeutic use of lingonberries. AIM OF THE STUDY The present study aimed at an in-depth study of specialized metabolite profiling and biological activity evaluation of lingonberry crude extracts and isolated fractions. MATERIALS AND METHODS Crude dry extracts and fractions from lingonberry leaves and fruits were analyzed by the UPLC-MS method. Potential inhibiting properties against different bacterial strains and hyaluronidase, ability to scavenge hydrogen peroxide, and effect on its production in a macrophage culture J774 were examined. RESULTS Findings suggested the tentative presence of 59 compounds, mainly phenolics, displayed higher bioactivities of particular fractions than that of crude extracts and elucidated particular compounds as candidates in pharmaceuticals. Trimeric and dimeric proanthocyanidins from lingonberry leaves and fruits were shown to have the strongest antimicrobial, antioxidant, and anti-inflammatory potential. CONCLUSIONS This study revealed specialized metabolites responsible for the traditional medicinal properties of lingonberries and pointed out demand for further purification and new research directions of proanthocyanidins in the frame of their multipharmacological perspectives.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania.
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania.
| | - Audrius Pukalskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254, Kaunas, Lithuania.
| | - Ausra Sipailiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu rd. 19, LT-50254, Kaunas, Lithuania.
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania; Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu av. 13, LT-50162, Kaunas, Lithuania.
| |
Collapse
|
7
|
Chlorogenic acid and Epicatechin: An efficient inhibitor of heterocyclic amines in charcoal roasted lamb meats. Food Chem 2022; 368:130865. [PMID: 34428692 DOI: 10.1016/j.foodchem.2021.130865] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
There are few studies on controlling the formation of heterocyclic amines (HAs) by adding polyphenols to roasted lamb. The aim of this study was to assess the inhibitory effect of 0.025, 0.125, and 0.625 mmol of chlorogenic acid, epicatechin, rutin, quercetin and quinic acid on the formation of HAs in charcoal roasted lamb, respectively, by UHPLC-MS/MS. The results indicated that Harman, Norharman, PhIP, IQx and 8-MeIQx were detected, but both chlorogenic acid and epicatechin greatly inhibited the formation of IQx, 8-MeIQx, Norharman, Harman and PhIP, and epicatechin had better inhibitory effect than chlorogenic acid. PLSR-VID analysis suggested the key precursors of HAs formation in roasted lamb were glucose, ribose, fructose, isoleucine, valine, and lysine. In addition, this work also implied that the potential mechanism of inhibition of HAs formation by chlorogenic acid and epicatechin in roasted lamb might attribute to competitive chemical reactions between polyphenols and key precursors of HAs.
Collapse
|
8
|
Zhao M, He H, Ma A, Hou T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide covalent conjugates: a review. Crit Rev Food Sci Nutr 2022; 63:5985-6004. [PMID: 35089848 DOI: 10.1080/10408398.2022.2026872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proteins/peptides and saccharides are two kinds of bioactive substances in nature. Recently, increasing attention has been paid in understanding and utilizing covalent interactions between proteins/peptides and saccharides. The products obtained through covalent conjugation of proteins/peptides to saccharides are shown to have enhanced functional attributes, such as better gelling property, thermostability, and water-holding capacity. Additionally, food-derived protein/peptide-saccharide covalent conjugates (PSCCs) also have biological activities, such as antibacterial, antidiabetic, anti-osteoporosis, anti-inflammatory, anti-cancer, immune regulatory, and other activities that are widely used in the functional food industry. Moreover, PSCCs can be used as packaging or delivery materials to improve the bioavailability of bioactive substances, which expands the development of food-derived protein and saccharide resources. Thus, this review was aimed to first summarize the current status of sources, classification structures of natural PSCCs. Second, the methods of chemical synthesis, reaction conditions, characterization and reagent formulations that improve the desired functional characteristics of food-derived PSCCs were introduced. Third, functional properties such as emulsion, edible films/coatings, and delivery of active substance, bio-activities such as antioxidant, anti-osteoporosis, antidiabetic, antimicrobial of food-derived PSCCs were extensively discussed.
Collapse
Affiliation(s)
- Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Ministry of Education, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
9
|
Golchinfar Z, Farshi P, Mahmoudzadeh M, Mohammadi M, Tabibiazar M, Smith JS. Last Five Years Development In Food Safety Perception of n-Carboxymethyl Lysine. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Parastou Farshi
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - J. Scott Smith
- Institute of Food Science, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Xie Y, van der Fels-Klerx HJ, van Leeuwen SPJ, Fogliano V. Dietary advanced glycation end-products, 2-monochloropropane-1,3-diol esters and 3-monochloropropane-1,2-diol esters and glycidyl esters in infant formulas: Occurrence, formulation and processing effects, mitigation strategies. Compr Rev Food Sci Food Saf 2021; 20:5489-5515. [PMID: 34626078 DOI: 10.1111/1541-4337.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023]
Abstract
Infant formula contains thermal processing contaminants, such as dietary advanced glycation end-products (dAGEs), glycidyl esters (GEs), 2-monochloropropane-1,3-diol esters and 3-monochloropropane-1,2-diol esters (MCPDEs). This systematic review aimed to gain insights into the occurrence of these contaminants in different types of infant formula, to understand potential effects of the formulation and processing of infant formulas on these contaminants, as well as into possible mitigation strategies. The occurrence of dAGEs in infant formula depends on the recipes and processing conditions. Hydrolyzed protein formulations promote dAGEs formation in infant formula since peptides are more prone to glycation than intact proteins, which is reflected in high dAGEs concentration in hypoallergenic infant formula. Different carbohydrates in recipes result into different glycation extents of infant formula: maltodextrin containing formulas contained less dAGEs than those with lactose. Concerning mitigation strategies, applying ultra-high-temperature (UHT) treatment during milk processing leads to less dAGEs formation than using in-bottle sterilization. Although data are limited, evidence showed that encapsulation of raw ingredients or the use of antioxidants or enzymes in recipes is promising. The occurrence of MCPDEs and GEs in infant formula fully depends on the vegetable oils used in the recipe. High levels of these contaminants can be found when relatively high amounts of palm oils or fats are used. The mitigation of MCPDEs and GEs should therefore be performed on fats and oils before their application to infant formula recipes. Data and knowledge gaps identified in this review can be useful to guide future studies.
Collapse
Affiliation(s)
- Yajing Xie
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| | | | | | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
11
|
Nadeem HR, Akhtar S, Ismail T, Sestili P, Lorenzo JM, Ranjha MMAN, Jooste L, Hano C, Aadil RM. Heterocyclic Aromatic Amines in Meat: Formation, Isolation, Risk Assessment, and Inhibitory Effect of Plant Extracts. Foods 2021; 10:foods10071466. [PMID: 34202792 PMCID: PMC8307633 DOI: 10.3390/foods10071466] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/01/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic compounds induced by the Maillard reaction in well-done cooked meats. Free amino acids, protein, creatinine, reducing sugars and nucleosides are major precursors involved in the production of polar and non-polar HAAs. The variety and yield of HAAs are linked with various factors such as meat type, heating time and temperature, cooking method and equipment, fresh meat storage time, raw material and additives, precursor’s presence, water activity, and pH level. For the isolation and identification of HAAs, advanced chromatography and spectroscopy techniques have been employed. These potent mutagens are the etiology of several types of human cancers at the ng/g level and are 100- to 2000-fold stronger than that of aflatoxins and benzopyrene, respectively. This review summarizes previous studies on the formation and types of potent mutagenic and/or carcinogenic HAAs in cooked meats. Furthermore, occurrence, risk assessment, and factors affecting HAA formation are discussed in detail. Additionally, sample extraction procedure and quantification techniques to determine these compounds are analyzed and described. Finally, an overview is presented on the promising strategy to mitigate the risk of HAAs by natural compounds and the effect of plant extracts containing antioxidants to reduce or inhibit the formation of these carcinogenic substances in cooked meats.
Collapse
Affiliation(s)
- Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan; (H.R.N.); (T.I.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Muhammad Modassar Ali Nawaz Ranjha
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| | - Leonie Jooste
- Environmental Health Sciences, Faculty of Communication, Arts and Sciences, Canadian University Dubai, Dubai 117781, United Arab Emirates;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, CEDEX 2, 45067 Orléans, France;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (S.A.); (J.M.L.); (M.M.A.N.R.); (R.M.A.)
| |
Collapse
|
12
|
Tamkutė L, Vaicekauskaitė R, Gil BM, Rovira Carballido J, Venskutonis PR. Black chokeberry (
Aronia melanocarpa
L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Laura Tamkutė
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Rūta Vaicekauskaitė
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | - Beatriz M. Gil
- Department of Food Science and Technology Kaunas University of Technology Kaunas Lithuania
| | | | | |
Collapse
|
13
|
Tian Y, Ma Z, Ma H, Gu Y, Li Y, Sun H. Comparative transcriptome analysis of lingonberry (Vaccinium vitis-idaea) provides insights into genes associated with flavonoids metabolism during fruit development. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1803130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Youwen Tian
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Zhili Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Haohao Ma
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Yu Gu
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Yadong Li
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| | - Haiyue Sun
- Engineering Center of Genetic Breeding and Innovative Utilization of Small Fruits of Jilin Province, College of Horticulture, Jilin Agricultural University, Changchun, Jilin, PR China
| |
Collapse
|
14
|
Poojary MM, Zhang W, Olesen SB, Rauh V, Lund MN. Green Tea Extract Decreases Arg-Derived Advanced Glycation Endproducts but Not Lys-Derived AGEs in UHT Milk during 1-Year Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14261-14273. [PMID: 33201715 DOI: 10.1021/acs.jafc.0c05995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epigallocatechin gallate (EGCG)-enriched green tea extract (GTE) was added to lactose-reduced UHT-treated milk to evaluate its role in perturbing the Maillard reaction and the formation of advanced glycation endproducts (AGEs) during 1-year storage. The UHT processing caused epimerization of EGCG into gallocatechin gallate (GCG). For milk samples with added 0.1% w/v GTE, a EGCG/GCG loss of 26% was found soon after the UHT treatment and the loss increased to 64% after the 1-year of storage. LC-MS/MS analysis revealed the presence of various EGCG/GCG-α-dicarbonyl adducts and EGCG/GCG-hydroxymethylfurfural adducts in milk samples, while EGCG/GCG-amino acid adducts were not detected. Although EGCG/GCG trapped α-dicarbonyl compounds including glyoxal, methylglyoxal, 3-deoxyglucosone/3-deoxygalactosone, and diacetyl, it did not lower their net steady-state concentrations, except of 3-deoxyglucosone. The addition of GTE reduced the formation of Arg-derived AGEs by 2- to 3-fold, but surprisingly enhanced the accumulation of furosine and lysine-derived AGEs [Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine)] by 2-4-fold depending on the concentration of the added GTE and storage time. The present study shows that trapping of α-dicarbonyl compounds by EGCG may not be the major pathway for inhibiting the formation of AGEs in milk.
Collapse
Affiliation(s)
- Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Wei Zhang
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Sarah Bisgaard Olesen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Valentin Rauh
- Arla Foods Innovation Center, Agro Food Park 19, 8200 Aarhus N, Denmark
| | - Marianne N Lund
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
15
|
Cao H, Chen B, Inbaraj BS, Chen L, Alvarez‐Rivera G, Cifuentes A, Zhang N, Yang D, Simal‐Gandara J, Wang M, Xiao J. Preventive potential and mechanism of dietary polyphenols on the formation of heterocyclic aromatic amines. FOOD FRONTIERS 2020; 1:134-151. [DOI: 10.1002/fft2.30] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThermal processing is the most important and popular domestic cooking method. More than 30 heterocyclic aromatic amines have been identified in cooked meat using various methods. This review highlights preventive potential and mechanism of dietary polyphenols on the formation of heterocyclic amines. Tea, coffee, fruits, vegetable, and spice extracts rich in polyphenols exerted significant inhibition against the formation of heterocyclic aromatic amines. Some polyphenols, such as naringenin and epigallocatechin 3‐O‐gallate, can actively participate into food chemistry reaction to trap Strecker aldehyde and lower the formation of heterocyclic aromatic amines. In addition, some polyphenols can lower the mutagenicity of heterocyclic aromatic amines. More specifically, polyphenols possessing two hydroxyl groups at the meta position of aromatic ring are the most efficient one, but the presence of carboxylic or alkyl groups as substituents in the aromatic ring slightly reduced the inhibitory effect.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
| | - Bing‐Huei Chen
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | | | - Lei Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian China
| | | | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research CIAL, CSIC Madrid Spain
| | - Nana Zhang
- School of Biological Sciences The University of Hong Kong Hong Kong
| | - Deng‐Jye Yang
- Institute of Food Safety and Health Risk Assessment National Yang‐Ming University Taipei Taiwan
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo‐Ourense Campus Ourense Spain
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Hong Kong
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| |
Collapse
|