1
|
Liu Y, Oey I, Leong SY, Kam R, Kantono K, Hamid N. Pulsed Electric Field Pretreatments Affect the Metabolite Profile and Antioxidant Activities of Freeze- and Air-Dried New Zealand Apricots. Foods 2024; 13:1764. [PMID: 38890992 PMCID: PMC11172103 DOI: 10.3390/foods13111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Pulsed electric field (PEF) pretreatment has been shown to improve the quality of dried fruits in terms of antioxidant activity and bioactive compounds. In this study, apricots were pretreated with PEF at different field strengths (0.7 kV/cm; 1.2 kV/cm and 1.8 kv/cm) at a frequency of 50 Hz, and electric pulses coming in every 20 µs for 30 s, prior to freeze-drying and air-drying treatments. PEF treatments were carried out at different field strengths. The impact of different pretreatments on the quality of dried apricot was determined in terms of physical properties, antioxidant activity, total phenolic content, and metabolite profile. PEF pretreatments significantly (p < 0.05) increased firmness of all the air-dried samples the most by 4-7-fold and most freeze-dried apricot samples (44.2% to 98.64%) compared to the control group. However, PEF treatment at 1.2 kV/cm did not have any effect on hardness of the freeze-dried sample. The moisture content and water activity of freeze-dried samples were found to be significantly lower than those of air-dried samples. Scanning electron microscopy results revealed that air drying caused the loss of fruit structure due to significant moisture loss, while freeze drying preserved the honeycomb structure of the apricot flesh, with increased pore sizes observed at higher PEF intensities. PEF pretreatment also significantly increased the antioxidant activity and total phenol content of both air-dried and freeze-dried apricots. PEF treatment also significantly (p < 0.05) increased amino acid and fatty acid content of air-dried samples but significantly (p < 0.05) decreased sugar content. Almost all amino acids (except tyrosine, alanine, and threonine) significantly increased with increasing PEF intensity. The results of this study suggest that PEF pretreatment can influence the quality of air-dried and freeze-dried apricots in terms antioxidant activity and metabolites such as amino acids, fatty acids, sugar, organic acids, and phenolic compounds. The most effective treatment for preserving the quality of dried apricots is freeze drying combined with high-intensity (1.8 kv/cm) PEF treatment.
Collapse
Affiliation(s)
- Ye Liu
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (I.O.); (S.Y.L.)
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (I.O.); (S.Y.L.)
| | - Rothman Kam
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Kevin Kantono
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Nazimah Hamid
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| |
Collapse
|
2
|
Al-Hilphy AR, Al-Behadli TK, Al-Mtury AA, Abd Al-Razzaq AA, Shaish AS, Liao L, Zeng XA, Manzoor MF. Innovative date syrup processing with ohmic heating technology: Physiochemical characteristics, yield optimization, and sensory attributes. Heliyon 2023; 9:e19583. [PMID: 37809817 PMCID: PMC10558822 DOI: 10.1016/j.heliyon.2023.e19583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
The present study aimed to investigate the application of the ohmic heating (OH) technique in the production of date syrup from the date fruit of the Sukkary variety at different electric field strengths (EFS) (9, 10, and 11 V/cm). The results were compared to the conventional heating method (CH). The response surface methodology was used to optimize yield. The results showed that the time to reach the boiling point of dates and water mixture using OH was less than the CH by 80% for extracting and 900% for evaporation. In addition, the productivity of date syrup using OH at EFS of 11 V/cm was higher than the CH by 86.11%. There is no significant effect between OH at EFS of 11 V/cm and CH in moisture content, refractive index, density, TSS, and viscosity. The optimum level of EFS was 11.5 V/cm, which gave a higher yield (64.93%). OH, save consumed power and cost. The OH gave the highest scores of sensory characteristics compared to CH. Total sugars, monosaccharides, and ketone monosaccharides were detected in the date syrup, and the result was positive, while the quintuple sugars and multiple sugars were negative for all treatments. The OH reduced the cost by 85.78% compared with CH.
Collapse
Affiliation(s)
- Asaad R. Al-Hilphy
- Department of Food Sciences, College of Agriculture, University of Basrah, Iraq
| | | | | | | | - Ayoub S. Shaish
- Department of Food Sciences, College of Agriculture, University of Basrah, Iraq
| | - Lan Liao
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Effect of Pulsed Electric Field on the Chicken Meat Quality and Taste-Related Amino Acid Stability: Flavor Simulation. Foods 2023; 12:foods12040710. [PMID: 36832786 PMCID: PMC9955897 DOI: 10.3390/foods12040710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Meat contains several amino acids related to taste, which have a significant impact on the overall acceptability of consumers. A number of volatile compounds have been studied in relation to meat flavor, but amino acids have not been fully explored in relation to the taste of raw or cooked meat. It would be interesting to find any changes in physicochemical characteristics, especially the level of taste-active compounds and flavor content during non-thermal processing such as pulsed electric fields (PEF), for commercial reasons. The effect of PEF at low intensity (LPEF; 1 kV/cm) and comparatively high intensity (HPEF; 3 kV/cm) with different pulse numbers (25, 50, and 100) was investigated on the physicochemical characteristics of chicken breast, including the free amino acid content (related to umami, sweet, bitter, or fresh pleasant taste). PEF is regarded as a "nonthermal" technology; however, HPEF induces moderate temperature rises as it increases with the treatment intensity (i.e., electric field strength and pulse number). The pH, shear force, and cook loss (%) of the LPEF and untreated samples were not affected by the treatments, but the shear force of the LPEF and untreated samples was lower than that of HPEF groups that showed PEF-induced slight structural modifications resulting in a more porous cell. In the case of color parameters, the lightness of meat (L*) was significantly higher with treatment intensity, whereas both a* and b* were unaffected by the PEF treatments. Moreover, PEF treatment significantly (p < 0.05) affected umami-related free amino acids (FAAs; glutamic acid and aspartic acid) and leucine and valine, which are precursors of flavor compounds. However, PEF decreases the level of bitter taste contributing FAAs such as lysine and tyrosine, which may prevent the formation of fermented flavors. In conclusion, both PEF treatments (LPEF and HPEF) did not adversely impact the physicochemical quality of chicken breast.
Collapse
|
4
|
Kyaw KS, Adegoke SC, Ajani CK, Nwabor OF, Onyeaka H. Toward in-process technology-aided automation for enhanced microbial food safety and quality assurance in milk and beverages processing. Crit Rev Food Sci Nutr 2022; 64:1715-1735. [PMID: 36066463 DOI: 10.1080/10408398.2022.2118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ensuring the safety of food products is critical to food production and processing. In food processing and production, several standard guidelines are implemented to achieve acceptable food quality and safety. This notwithstanding, due to human limitations, processed foods are often contaminated either with microorganisms, microbial byproducts, or chemical agents, resulting in the compromise of product quality with far-reaching consequences including foodborne diseases, food intoxication, and food recall. Transitioning from manual food processing to automation-aided food processing (smart food processing) which is guided by artificial intelligence will guarantee the safety and quality of food. However, this will require huge investments in terms of resources, technologies, and expertise. This study reviews the potential of artificial intelligence in food processing. In addition, it presents the technologies and methods with potential applications in implementing automated technology-aided processing. A conceptual design for an automated food processing line comprised of various operational layers and processes targeted at enhancing the microbial safety and quality assurance of liquid foods such as milk and beverages is elaborated.
Collapse
Affiliation(s)
- Khin Sandar Kyaw
- Department of International Business Management, Didyasarin International College, Hatyai University, Songkhla, Thailand
| | - Samuel Chetachukwu Adegoke
- Joint School of Nanoscience and Nanoengineering, Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ozioma Forstinus Nwabor
- Infectious Disease Unit, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
5
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
6
|
Manzoor MF, Xu B, Khan S, Shukat R, Ahmad N, Imran M, Rehman A, Karrar E, Aadil RM, Korma SA. Impact of high-intensity thermosonication treatment on spinach juice: Bioactive compounds, rheological, microbial, and enzymatic activities. ULTRASONICS SONOCHEMISTRY 2021; 78:105740. [PMID: 34492523 PMCID: PMC8427224 DOI: 10.1016/j.ultsonch.2021.105740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 05/04/2023]
Abstract
To study the impacts of thermosonication (TS), the spinach juice treated with TS (200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 mint) were investigated for bioactive compounds, antioxidant activities, color properties, particle size, rheological behavior, suspension stability, enzymatic and microbial loads. As a result, TS processing significantly improved the bioactive compounds (total flavonols, total flavonoids, total phenolic, carotenoids, chlorophyll, and anthocyanins), antioxidant activities (DPPH and FRAP assay) in spinach juice. Also, TS treatments had higher b*,L*, hue angle (h0), and chroma (C) values, while minimuma* value as compared to untreated and pasteurized samples. TS processing significantly reduced the particle size, improved the suspension stability and rheological properties (shear stress, apparent viscosity, and shear rate) of spinach juice as compared to the untreated and pasteurized sample. TS plays a synergistic part in microbial reduction and gained maximum microbial safety. Moreover, TS treatments inactivated the polyphenol oxidase and peroxidase from 0.97 and 0.034 Abs min-1 (untreated) to 0.31 and 0.018 Abs min-1, respectively. The spinach juice sample treated at a high intensity (600 W, 30 kHz, at 60 ± 1 °C for 20 mint, TS3) exhibited complete inactivation of microbial loads (<1 log CFU/ml), the highest reduction in enzymatic activities, better suspension stability, color properties, and highest bioactive compounds. Collectively, the verdicts proposed that TS processing could be a worthwhile option to pasteurize the spinach juice to enhance the overall quality.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, 38000 Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rizwan Shukat
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazing University, Sharkia, Egypt
| |
Collapse
|
7
|
Olatunde OO, Shiekh KA, Ma L, Ying X, Zhang B, Benjakul S. Effect of the extract from custard apple (
Annona squamosa
) leaves prepared with pulsed electric field‐assisted process on the diversity of microorganisms and shelf‐life of refrigerated squid rings. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Khursheed Ahmad Shiekh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology College of Light Industry and Food Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
- Academy of Contemporary Agricultural Engineering Innovations Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood Collaborative Innovation Center of Seafood Deep Processing College of Food and Pharmacy Zhejiang Ocean University Zhoushan 316022 China
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058 China
| | - Bin Zhang
- College of Food and Pharmacy Zhejiang Ocean University Zhoushan Zhejiang 316022 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
8
|
Ahmed Z, Faisal Manzoor M, Hussain A, Hanif M, Zia-Ud-Din, Zeng XA. Study the impact of ultra-sonication and pulsed electric field on the quality of wheat plantlet juice through FTIR and SERS. ULTRASONICS SONOCHEMISTRY 2021; 76:105648. [PMID: 34182313 PMCID: PMC8250445 DOI: 10.1016/j.ultsonch.2021.105648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 08/01/2023]
Abstract
Pulsed electric field (PEF) and Ultrasound (US) are commonly used in food processing. We investigated the combined impact of pulsed electric field (PEF) and ultrasound (US) on the wheat plantlet juice. When compared with the individual treatments, the highest values of total phenolics, total flavonoids, chlorophyll, ORAC assay, and DPPH activities were obtained using the combined (US + PEF) methods. The US + PEF significantly decreased the peroxidase and polyphenol oxidase activities from 0.87 to 0.27 Abs min-1 and 0.031-0.016 Abs min-1. Also, the synergistic application significantly lowered the yeast and mold (3.92 to 2.11 log CFU/mL), E. coli/Coliform (1.95 to 0.96 log CFU/mL), and aerobics (4.41 to 2.01 log CFU/mL). Furthermore, Fourier Transform Infrared (FT-IR) and surface-enhanced Raman spectroscopy (SERS) was used to analyzing juice quality. Gold nanoparticles (AuNPs) were used as the SERS substrates, which provided stronger Raman peaks for the samples treated with US + PEF methods. The FT-IR analysis showed significant enhancement of the nutritional molecules. The enhanced quality of wheat plantlet juice combined with lower yeast and mold suggests the suitability of integrated methods for further research and applications.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| | - Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Department of Agriculture and Food Science, Karakorum International University, Gilgit, Pakistan
| | - Muddasir Hanif
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zia-Ud-Din
- Department of Human Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
9
|
Ahmad Shiekh K, Odunayo Olatunde O, Zhang B, Huda N, Benjakul S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chem 2021; 359:129976. [PMID: 33957326 DOI: 10.1016/j.foodchem.2021.129976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Impact of pulsed electric field (PEF) assisted process on preparation of custard apple leaf extract (CALE) using ethanol (70%, v/v) was studied. Different electric field strengths (2-6 kV/cm), pulse numbers (100-300 pulses) with specific energies (45-142 kJ/kg) for 2.5 to 5 min were implemented. Cell disintegration index was higher in CALE when PEF 6 kV/cm, 300 pulses, 142 kJ/kg for 5 min was applied. Extraction yield was higher (+5.2%) than the untreated counterpart (13.28%). Chlorophyll A and B contents were negligible in PEF pre-treated CALE. PEF improved radical scavenging activities assessed by DPPH, ABTS radical scavening activities and FRAP. The antibacterial properties of CALE against Staphylococcus aureus and Escherichia coli were highest. Purpureacin 2 and rutin were abundant in PEF pre-treated CALE. Therefore PEF was the potential aid in augmenting extraction yield and bioactivities of the extract from custard apple leaves.
Collapse
Affiliation(s)
- Khursheed Ahmad Shiekh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Oladipupo Odunayo Olatunde
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
10
|
Faisal Manzoor M, Ahmed Z, Ahmad N, Karrar E, Rehman A, Muhammad Aadil R, Al‐Farga A, Waheed Iqbal M, Rahaman A, Zeng X. Probing the combined impact of pulsed electric field and ultra‐sonication on the quality of spinach juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Zahoor Ahmed
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Nazir Ahmad
- Department of Food Science and Nutrition Faculty of Life Science Government College University Faisalabad Pakistan
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Faisalabad Pakistan
| | - Ammar Al‐Farga
- Department of Biochemistry College of Sciences University of Jeddah Jeddah Saudi Arabia
| | | | - Abdul Rahaman
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
| |
Collapse
|
11
|
Ahmad A, Naqvi SA, Jaskani MJ, Waseem M, Ali E, Khan IA, Faisal Manzoor M, Siddeeg A, Aadil RM. Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain. Food Sci Nutr 2021; 9:2066-2074. [PMID: 33841824 PMCID: PMC8020936 DOI: 10.1002/fsn3.2175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/11/2023] Open
Abstract
Dates (Phoenix dactylifera L.) are rich in nutritional compounds, particularly in sugars. Sugars offer anaerobic fermentation, used for bioethanol production. Recently, researchers and industrialists finding ways to produce low-cost bioethanol on large scale using agricultural wastes. Date palm residual is the largest agricultural waste in Pakistan, which can be the cheapest source for bioethanol production, whereas the current study was designed to explore the possible utilization and the potential of date palm waste for bioethanol production through Saccharomyces cerevisiae grown in yeast extract, Bacto peptone, and d-glucose medium. The fermentation process resulted in the production of 15% (v/v) ethanol under the optimum condition of an incubation period of 72 hr and three sugars (glucose, fructose, and sucrose) were found in date waste. The functional group of ethanol (C2H5OH) was also found via Fourier-transform infrared spectroscopy (FTIR) analysis. Therefore, S. cerevisiae could be recommended for ethanol production due to short fermentation time at 25% inoculum in 30°C and reduced the processing cost. Common date varieties of low market value are a preferred substrate for the process of producing industrial ethanol. Additionally, proximate analysis of date fruit by near-infrared spectroscopy revealed moisture contents (16.84%), crude protein (0.3%), ash (9.8%), crude fat (2.6%), and neutral detergent fibers (13.4%). So, date fruit contains various nutrients for microbial growth for ethanol production.
Collapse
Affiliation(s)
- Arslan Ahmad
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Summar A. Naqvi
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Muhammad J. Jaskani
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Muhammad Waseem
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Ehsan Ali
- Punjab Bioenergy InstituteUniversity of AgricultureFaisalabadPakistan
| | - Iqrar A. Khan
- Institute of Horticultural SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | | | - Azhari Siddeeg
- Department of Food EngineeringFaculty of EngineeringUniversity of GeziraWad MedaniSudan
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| |
Collapse
|
12
|
Manzoor MF, Ahmad N, Ahmed Z, Siddique R, Mehmood A, Usman M, Zeng XA. Effect of dielectric barrier discharge plasma, ultra-sonication, and thermal processing on the rheological and functional properties of sugarcane juice. J Food Sci 2020; 85:3823-3832. [PMID: 33073398 DOI: 10.1111/1750-3841.15498] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The present work was designed to study the impact of dielectric barrier discharge (DBD) plasma, ultrasound (US), and thermal treatment on the functional, rheological, and microbial analysis of sugarcane juice. The results showed that plasma and US treatment did not significantly affect the pH and color of the juice. Total soluble solids (°Brix) value increased from 16.30 ± 0.10 for untreated to 20.50 ± 0.15 during plasma treatment at 45 V for 2 min and 16.65 ± 0.27 during US treatment (40 kHz, power 240 W, and time 40 min). The maximum increase of 25% in total phenolic contents (TPC) and 21% in total flavonoid contents (TFC) was observed in a plasma-treated sample at 40 and 45 V (for 2 min) respectively, whereas 18% in TPC and 16% TFC was observed in the US-treated sample (40 kHz, power 240 W, and time 30 min) as compared to control sample. Plasma treatment increased the antioxidant activities (Ferric reducing antioxidant power (FRAP) assay and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) activity) toward maximum at 40 V and only 6% of vitamin C was degraded than others. Similarly, plasma treatment significantly reduced particle size, which further led to decreased significantly (P < 0.05) the apparent viscosity of sugarcane juice with a rise in shear rate and drove to a speedy breakdown on initial shearing. A significant reduction was observed in the microbial load among all treatments as compared to the control. Significant reductions of 3.6 and 0.50 log CFU/mL were observed in the total aerobic mesophilic and yeast and mold counts after DBD plasma treatment at 45 V for 2 min, respectively. Thus, we can conclude that novel technology like plasma treatment can be effectively used at an industrial scale for the preservation and processing of sugarcane juice. PRACTICAL APPLICATION: Nowadays, novel processing techniques are employed to improve the nutritional quality and stability of juices. The consequences of the present research showed that DBD plasma treatment could improve the TPC, TFC, antioxidant activities, vitamin C, and rheological properties while reducing the activity of the microbial load better than the US and thermal treatment. The verdicts described that novel processing methods can enhance the quality of sugarcane juice at an industrial scale.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Zahoor Ahmed
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Rabia Siddique
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Arshad Mehmood
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
13
|
Manzoor MF, Zeng X, Ahmad N, Ahmed Z, Rehman A, Aadil RM, Roobab U, Siddique R, Rahaman A. Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial, and physical stability of almond milk during storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Nazir Ahmad
- Institute of Home and Food Sciences Faculty of Life Science Government College University Faisalabad Pakistan
| | - Zahoor Ahmed
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
| | - Rana Muhammad Aadil
- National Institute of Food Science and TechnologyUniversity of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Rabia Siddique
- Department of Chemistry Government College University Faisalabad Pakistan
| | - Abdul Rahaman
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
14
|
Ahmed Z, Manzoor MF, Ahmad N, Zeng X, Din ZU, Roobab U, Qayum A, Siddique R, Siddeeg A, Rahaman A. Impact of pulsed electric field treatments on the growth parameters of wheat seeds and nutritional properties of their wheat plantlets juice. Food Sci Nutr 2020; 8:2490-2500. [PMID: 32405405 PMCID: PMC7215213 DOI: 10.1002/fsn3.1540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
This study was designed to explore the impacts of the pulsed electric field (PEF; 2 to 6 kV/cm; a number of pulses 25 and 50) on wheat (Tritium aestivum L.) seeds before imbibition to improve the germination, growth, and their nutritional profile in juice form. It was observed that the PEF treatment at 6 kV/cm at 50 pulses increased water uptake, germination of seeds, and growth parameters of seedlings. A significant increase in total phenolic contents, DPPH, chlorophylls, carotenoids, soluble proteins, minerals, and amino acids in PEF-treated seeds plantlets juice as compared to the untreated seeds plantlets juice was observed. The results indicate that the PEF may effectively stimulate the growth of the wheat kernels and positively affect their metabolism, optimize the nutrients, and enhance the strength of the wheat kernels plantlets.
Collapse
Affiliation(s)
- Zahoor Ahmed
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)GuangzhouChina
| | - Muhammad Faisal Manzoor
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)GuangzhouChina
| | - Nazir Ahmad
- Institute of Home and Food SciencesFaculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Xin‐An Zeng
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)GuangzhouChina
| | - Zia ud Din
- Department of Human NutritionThe University of Agriculture, PeshawarPeshawarPakistan
| | - Ume Roobab
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)GuangzhouChina
| | - Abdul Qayum
- Key Laboratory of Dairy ScienceNortheast Agriculture UniversityMinistry of EducationHarbinChina
| | - Rabia Siddique
- Department of ChemistryGovernment College University FaisalabadFaisalabadPakistan
| | - Azhari Siddeeg
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity GeziraWad MedaniSudan
| | - Abdul Rahaman
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center)GuangzhouChina
| |
Collapse
|