1
|
Kahraman-Ilıkkan Ö. Comparative genomics of four lactic acid bacteria identified with Vitek MS (MALDI-TOF) and whole-genome sequencing. Mol Genet Genomics 2024; 299:31. [PMID: 38472540 DOI: 10.1007/s00438-024-02129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.
Collapse
|
2
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Zhang Z, Zhao H, Deng Y, Luo W, Luo X, Wang C, Quan C, Guo Z, Wang Y. Bacterial diversity and its correlation with sensory quality of two types of zha-chili from Shennongjia region, China. Food Res Int 2023; 168:112789. [PMID: 37120235 DOI: 10.1016/j.foodres.2023.112789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 05/01/2023]
Abstract
In the Shennongjia region of China, two types of zha-chili with distinct flavors exist: the first type (P zha-chili) uses a significant amount of chili pepper but no potato, while the other (PP zha-chili) contains a smaller amount of chili pepper but a proportion of potato. In order to investigate the bacterial diversity and sensory properties of these two types of zha-chili, this study employed a combination of amplicon sequencing, culture-based methods, and sensory technology. The results of the study showed statistically significant differences (P < 0.05) in bacterial diversity and communities between the two types of zha-chili. In particular, four dominant lactic acid bacteria (LAB) genera - Lactiplantibacillus, Lactococcus, Leuconostoc, and Weissella - were significantly enriched in PP zha-chili. The findings suggest that the proportions of chili pepper and potato can influence the bacterial diversity and content of LAB, with a higher proportion of chili pepper potentially inhibiting the growth of harmful species within the Enterobacteriaceae family. The study also used culture-based methods to identify the most dominant bacteria in the zha-chili samples as Lactiplantibacillus plantarum group, Companilactobacillus alimentarius, and Lacticaseibacillus paracasei. Correlation analysis indicated that LAB likely plays a significant role in shaping the aroma profile of zha-chili, with Levilactobacillus, Leuconostoc, Lactiplantibacillus, and Lactococcus showing correlation with E-nose sensory indices. However, these LAB were not significantly correlated with the taste properties of zha-chili. The study provides new insights into the influence of chili pepper and potato on the microbial diversity and flavor properties of zha-chili, and also presents potential LAB isolates for future research on zha-chili.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Huijun Zhao
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yumei Deng
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Wen Luo
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Xiyun Luo
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Chan Wang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Changbin Quan
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou Province, China.
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
4
|
Changes in Bio-Functional Compounds, ACE Inhibition, and Antioxidant Capacity after Mixed Fermentation of Eight Whole Grains. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Whole grains are rich in nutrients and antioxidants and can be fermented to increase their biological functions. This study used two fermentation steps to ferment eight whole grains. The bio-functional compounds, ACE inhibition, and antioxidant capacity were measured during the second fermentation step. The results indicate that the total phenols content increased by 2605%, total flavonoid content increased by 1707%, ABTS radical scavenging capacity increased by 239%, DPPH radical scavenging capacity increased by 325%, GABA increased by 4810%, glucuronic acid increased by 4278%, ACE inhibition increased by 69.28%, and total amino acids increased by 2197.72% after 13 weeks of fermentation. These results showed that a fermentation beverage with eight whole grains could be considered a drink with health benefits.
Collapse
|
5
|
Wei G, Chitrakar B, Regenstein JM, Sang Y, Zhou P. Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Res Int 2023; 163:112183. [PMID: 36596125 DOI: 10.1016/j.foodres.2022.112183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
6
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
7
|
Unraveling the microbial community and succession during zha-chili fermentation and their relationships with flavor formation. Food Res Int 2022; 157:111239. [DOI: 10.1016/j.foodres.2022.111239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/04/2023]
|
8
|
Guo Z, Wang Y, Xiang F, Dong Y, Hou Q, Zhang Z. Evaluating the flavor and divergent bacterial communities in corn-based zha-chili. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Effects of microbial community succession on flavor compounds and physicochemical properties during CS sufu fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Ali MS, Lee EB, Lee SJ, Lee SP, Boby N, Suk K, Birhanu BT, Park SC. Aronia melanocarpa Extract Fermented by Lactobacillus plantarum EJ2014 Modulates Immune Response in Mice. Antioxidants (Basel) 2021; 10:antiox10081276. [PMID: 34439524 PMCID: PMC8389331 DOI: 10.3390/antiox10081276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to assess the immunomodulatory effects of fermented Aronia melanocarpa extract (FAME) on RAW 264.7 cells and BALB/c mice. Aronia melanocarpa fruit was fermented with Lactobacillus plantarum EJ2014 by adding yeast extract and monosodium glutamate for 9 days at 30 °C to produce γ-aminobutyric acid (GABA). After fermentation, significant GABA production was noted, along with minerals, polyphenols, and flavonoids (p < 0.05). The polyphenol content was confirmed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RAW 264.7 cells were stimulated with lipopolysaccharide (LPS, 1 μg/mL) in the presence or absence of FAME, and proinflammatory cytokine contents were measured by qPCR. In the in vivo experiment, female BALB/c mice were administered 125, 250, and 500 mg/kg of FAME for 21 days. FAME treatment increased neutrophil migration and phagocytosis (p < 0.05). It also increased splenocyte proliferation, CD4+ and CD8+ T-cell expression, and lymphocyte proliferation. Furthermore, it increased IFN-γ, IL-2, and IL-4 cytokine levels in a dose-dependent manner (p < 0.05). However, it decreased TNF-α and IL-6 levels (p < 0.05). These results indicate that FAME fortified with GABA including bioactive compounds exerts anti-inflammatory effects by inhibiting proinflammatory cytokines in RAW 264.7 cells and modulates immune response in mice. Thus, FAME could be a potential therapeutic agent for inflammatory disorders.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea; (M.S.A.); (K.S.)
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Sam-Pin Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Korea;
| | - Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea; (M.S.A.); (K.S.)
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-10-5105-5545 (B.T.B.); +82-53-950-5964 (S.-C.P.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (E.-B.L.); (N.B.)
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-10-5105-5545 (B.T.B.); +82-53-950-5964 (S.-C.P.)
| |
Collapse
|
11
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
12
|
Liu J, Chen J, Li S, Tian W, Wu H, Han B. Comparison of volatile and non-volatile metabolites in sufu produced with bacillus licheniformis by rapid fermentation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1901733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jingjing Liu
- Department of Food Technology, School of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Jingyu Chen
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - shuangshi Li
- Department of Food Technology, School of Bioengineering, Beijing Polytechnic, Beijing, China
| | - weina Tian
- Department of Food Technology, School of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Haigang Wu
- School of Life Sciences, Henan University, Henan, China
| | - Beizhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Cataldo PG, Villena J, Elean M, Savoy de Giori G, Saavedra L, Hebert EM. Immunomodulatory Properties of a γ-Aminobutyric Acid-Enriched Strawberry Juice Produced by Levilactobacillus brevis CRL 2013. Front Microbiol 2021; 11:610016. [PMID: 33391235 PMCID: PMC7773669 DOI: 10.3389/fmicb.2020.610016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a key role in mammals as the major inhibitory neurotransmitter of the central nervous system. Although GABA may not be able to cross the human blood-brain barrier, it was approved as a food ingredient because of its benefits to the host after oral administration including anti-hypertensive, anti-depressant and anti-inflammatory activities. Considering the current trend toward the development of new functional and natural products and that microbial fermentation is one of the most promising methods to produce this non-protein amino acid, the in situ production of GABA through fermentation of strawberry and blueberry juices by the efficient GABA producer strain, Levilactobacillus brevis (formerly known as Lactobacillus brevis) CRL 2013, was evaluated. A high GABA production (262 mM GABA) was obtained after fermenting strawberry juice supplemented with yeast extract for 168 h, being GABA yield significantly higher in strawberry juices than in the blueberry ones. Thus, GABA-enriched fermented strawberry juice (FSJ) was selected to carry out in vivo and in vitro studies. The in vitro functional analysis of the GABA-enriched FSJ demonstrated its ability to significantly decrease the expression of cox-2 gene in LPS stimulated RAW 264.7 macrophages. In addition, in vivo studies in mice demonstrated that both, L. brevis CRL 2013 and the GABA-enriched FSJ were capable of reducing the levels of peritoneal, intestinal and serum TNF-α, IL-6, and CXCL1, and increasing IL-10 and IFN-γ in mice exposed to an intraperitoneal challenge of LPS. Of note, the GABA-enriched FSJ was more efficient than the CRL 2013 strain to reduce the pro-inflammatory factors and enhance IL-10 production. These results indicated that the CRL 2013 strain exerts anti-inflammatory effects in the context of LPS stimulation and that this effect is potentiated by fermentation. Our results support the potential use of L. brevis CRL 2013 as an immunomodulatory starter culture and strawberry juice as a remarkable vegetable matrix for the manufacture of GABA-enriched fermented functional foods capable of differentially modulating the inflammatory response triggered by TLR4 activation.
Collapse
Affiliation(s)
- Pablo G Cataldo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Julio Villena
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Mariano Elean
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | | | - Lucila Saavedra
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Elvira M Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
14
|
Liu L, Chen X, Hao L, Zhang G, Jin Z, Li C, Yang Y, Rao J, Chen B. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. Crit Rev Food Sci Nutr 2020; 62:1971-1989. [PMID: 33226273 DOI: 10.1080/10408398.2020.1848792] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional fermented soybean food has emerged as an important part of people's dietary structure because of the unique flavors and improved health benefit. During fermentation, the nutrients in soybean undergo a series of biochemical reactions catalyzed naturally by microorganism secreted enzymes. Thereafter, many functional and bioactive substances such as bioactive peptides, unsaturated fatty acids, free soy isoflavones, vitamins and minerals are produced, making fermented soy products more advantageous in nutrition and health. This review comprehensively discusses the historical evolution, distribution, traditional fermentation processing, main sources and characteristics of fermented strains, flavor components, nutritional properties, and biological activities of four traditional fermented soybean foods including douchi, sufu, dajiang, and soy sauce. In the end, we introduce four major challenges encountered by traditional fermented soybean foods including high salt content, formation of biogenic amine, the presence of pathogenic microorganisms and mycotoxins, and quality inconsistency. We conclude that the establishment of scientific quality standard and innovated fermentation processing is the potential solutions to combat the issues and improve the safety of traditional fermented soybean products.
Collapse
Affiliation(s)
- Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Xiaoqian Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Linlin Hao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhao Jin
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Yuzhuo Yang
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
15
|
Das G, Paramithiotis S, Sundaram Sivamaruthi B, Wijaya CH, Suharta S, Sanlier N, Shin HS, Patra JK. Traditional fermented foods with anti-aging effect: A concentric review. Food Res Int 2020; 134:109269. [PMID: 32517898 DOI: 10.1016/j.foodres.2020.109269] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Fermentation has been applied since antiquity as a way to preserve foodstuff or as a necessary step in the production of a variety of products. The research was initially focused on accurate description of production procedure and identification of parameters that may affect the composition and dynamics of the developing micro-communities, since the major aim was standardization and commercial exploitation of the products. Soon it was realized that consumption of these products was associated with an array of health benefits, such as anti-hypertensive, anti-inflammatory, anti-diabetic, anti-carcinogenic and anti-allergenic activities. These were credited to the microorganisms present in the fermented products as well as their metabolic activities and the bio-transformations that took place during the fermentation process. Aging has been defined as a gradual decline in the physiological function and concomitantly homeostasis, which is experienced by all living beings over time, leading inevitably to age-associated injuries, diseases, and finally death. Research has focused on effective strategies to delay this process and thus increase both lifespan and well-being. Fermented food products seem to be a promising alternative due to the immunomodulatory effect of microorganisms and elevated amounts of bioactive compounds. Indeed, a series of anti-aging related benefits have been reported, some of which have been attributed to specific compounds such as genistein and daidzein in soybeans, while others are yet to be discovered. The present article aims to collect and critically discuss all available literature regarding the anti-aging properties of fermented food products.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Sigit Suharta
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea.
| |
Collapse
|